首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   30篇
  2024年   3篇
  2023年   2篇
  2022年   9篇
  2021年   16篇
  2020年   6篇
  2019年   7篇
  2018年   6篇
  2017年   5篇
  2016年   28篇
  2015年   21篇
  2014年   20篇
  2013年   25篇
  2012年   23篇
  2011年   22篇
  2010年   20篇
  2009年   15篇
  2008年   24篇
  2007年   18篇
  2006年   16篇
  2005年   17篇
  2004年   14篇
  2003年   8篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1982年   3篇
  1981年   5篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1975年   8篇
  1974年   6篇
  1973年   4篇
  1969年   2篇
  1962年   2篇
  1955年   1篇
  1954年   1篇
排序方式: 共有437条查询结果,搜索用时 15 毫秒
11.
Russian Journal of Bioorganic Chemistry - Discovery towards the potent antimicrobial agents is indispensable for the treatment of infections caused by resistant microbes. Thus, we prepared a novel...  相似文献   
12.
13.
14.
An efficient protocol has been developed for the synthesis of a small library of 3′-deoxy-3′-(4-substituted-triazol-1-yl)-5-methyluridine using Cu(I)-catalyzed Huisgen–Sharpless–Meldal 1,3-dipolar cycloaddition reaction of 3′-azido-3′-deoxy-5-methyluridine with different alkynes under optimized condition in an overall yields of 76%–92%. Here, the azido precursor compound, i.e., 3′-azido-3′-deoxy-5-methyluridine was chemoenzymatically synthesized from D-xylose in good yield. Some of the alkynes used in cycloaddition reaction were synthesized by the reaction of hydroxycoumarins or naphthols with propargyl bromide in acetone using K2CO3in excellent yields. All synthesized compounds were unambiguously identified on the basis of their spectral (IR, 1H-, 13C NMR spectra, and high-resolution mass spectra) data analysis.  相似文献   
15.
Highlights? Nondiabetic LRP6 mutation carriers are hyperinsulinemic and insulin resistant ? IR expression is reduced in skeletal muscles of the LRP6 mutation carriers ? Wnt/LRP6 regulate the insulin receptor and IGFR expression ? The LRP6 mutation reduces TCF7L2-dependent IR expression and enhances mTOR activity  相似文献   
16.
Protein N-terminal methionine excision is an essential co-translational process that occurs in the cytoplasm of all organisms. About 60-70% of the newly synthesized proteins undergo this modification. Enzyme responsible for the removal of initiator methionine is methionine aminopeptidase (MetAP), which is a dinuclear metalloprotease. This protein is conserved through all forms of life from bacteria to human except viruses. MetAP is classified into two isoforms, Type I and II. Removal of the map gene or chemical inhibition is lethal to bacteria and to human cell lines, suggesting that MetAP could be a good drug target. In the present study we describe the discovery of a new genetic variant of the Type I MetAP that is present predominantly in the streptococci bacteria. There are two inserts (insert one: 27 amino acids and insert two: four residues) within the catalytic domain. Possible glycosylation and phosphorylation posttranslational modification sites are identified in the ‘insert one’. Biochemical characterization suggests that this enzyme behaves similar to other MetAPs in terms of substrate specificity. Crystal structure Type Ia MetAP from Streptococcus pneumoniae (SpMetAP1a) revealed that it contains two molecules in the asymmetric unit and well ordered inserts with structural features that corroborate the possible posttranslational modification. Both the new inserts found in the SpMetAP1a structurally align with the P-X-X-P motif found in the M. tuberculosis and human Type I MetAPs as well as the 60 amino acid insert in the human Type II enzyme suggesting possible common function. In addition, one of the β-hairpins within in the catalytic domain undergoes a flip placing a residue which is essential for enzyme activity away from the active site and the β-hairpin loop of this secondary structure in the active site obstructing substrate binding. This is the first example of a MetAP crystallizing in the inactive form.  相似文献   
17.
Genetic diversity and population structure were analyzed in 67 diverse finger millet accessions of African and Indian origin. A total of 69 alleles were generated with a mean of 4.0 alleles per locus and with an average gene diversity of 0.471. Molecular diversity parameters showed higher values in African accessions. Nineteen rare and nine unique alleles were observed and the identified accessions can be a potential source for further improvement of finger millet. Clustering of south Indian accessions with African lowland types and north/highland Indian accessions with that of African highlands was also observed. Structure analysis revealed the distinctness of Ugandan accessions compared to other African accessions and five major sub-populations useful for parental selection, conservation, and utilization of finger millet.  相似文献   
18.
The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.  相似文献   
19.
20.
Insulin is an essential hormone with key roles in energy homeostasis and body composition. Mice and rats, unlike other mammals, have two insulin genes: the rodent-specific Ins1 gene and the ancestral Ins2 gene. The relationships between insulin gene dosage and obesity has previously been explored in male and female Ins2-/- mice with full or reduced Ins1 dosage, as well as in female Ins1-/- mice with full or partial Ins2 dosage. We report herein unexpected hyper-variability in Ins1-null male mice, with respect to their circulating insulin levels and to the physiological effects of modulating Ins2 gene dosage. Two large cohorts of Ins1-/-:Ins2+/- mice and their Ins1-/-:Ins2+/+ littermates were fed chow diet or high fat diet (HFD) from weaning, and housed in specific pathogen-free conditions. Cohort A and cohort B were studied one year apart. Contrary to female mice from the same litters, inactivating one Ins2 allele on the complete Ins1-null background did not consistently cause a reduction of circulating insulin in male mice, on either diet. In cohort A, all HFD-fed males showed an equivalent degree of insulin hypersecretion and weight gain, regardless of Ins2 dosage. In cohort B the effects of HFD appeared generally diminished, and cohort B Ins1-/-:Ins2+/- males showed decreased insulin levels and body mass compared to Ins1-/-:Ins2+/+ littermates, on both diets. Although experimental conditions were consistent between cohorts, we found that HFD-fed Ins1-/-:Ins2+/- mice with lower insulin levels had increased corticosterone. Collectively, these observations highlight the phenotypic characteristics that change in association with differences in circulating insulin and Ins2 gene dosage, particularly in male mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号