首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6666篇
  免费   386篇
  国内免费   2篇
  2023年   14篇
  2022年   20篇
  2021年   98篇
  2020年   70篇
  2019年   66篇
  2018年   111篇
  2017年   85篇
  2016年   157篇
  2015年   215篇
  2014年   273篇
  2013年   500篇
  2012年   440篇
  2011年   435篇
  2010年   287篇
  2009年   287篇
  2008年   488篇
  2007年   439篇
  2006年   443篇
  2005年   445篇
  2004年   470篇
  2003年   406篇
  2002年   359篇
  2001年   69篇
  2000年   60篇
  1999年   66篇
  1998年   83篇
  1997年   72篇
  1996年   44篇
  1995年   60篇
  1994年   52篇
  1993年   43篇
  1992年   49篇
  1991年   23篇
  1990年   19篇
  1989年   29篇
  1988年   16篇
  1987年   16篇
  1986年   23篇
  1985年   17篇
  1984年   20篇
  1983年   16篇
  1982年   24篇
  1981年   25篇
  1980年   11篇
  1979年   18篇
  1977年   13篇
  1973年   11篇
  1971年   8篇
  1970年   7篇
  1969年   8篇
排序方式: 共有7054条查询结果,搜索用时 203 毫秒
61.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   
62.
An Arabidopsis thaliana mutant that produces green seeds thatare highly insensitive to exogenous ABA, non-dormant and severelydesiccation intolerant was isolated from a population of fastneutron-irradiated seeds. Molecular and genetic analysis ofthis mutant shows that these phenotypes are caused by an internaldeletion of approximately one third of the ABI3 gene. Thereforeabi3 mutants with the above phenotypes are representative ofnull alleles at this locus. (Received December 3, 1993; Accepted January 22, 1994)  相似文献   
63.
64.
A novel photorespiratory mutant of Arabidopsis thaliana, designatedgld2, was isolated based on a growth requirement for abnormallyhigh levels of atmospheric CO2. Photosynthetic CO2 fixationwas inhibited in the mutant following illumination in air butnot in atmosphere containing 2% O2. Photosynthetic assimilationof 14CO2 in an atmosphere containing 50% O2 resulted in accumulationof 48% of the soluble label in glycine in the mutant comparedto 9% in the wild type. The rate of glycine decarboxylationby isolated mitochondria from the mutant was reduced to 6% ofthe wild type rate. In genetic crosses, the mutant complementedtwo previously described photorespiratory mutants of A. thalianathat accumulate glycine during photosynthesis in air due todefects in glycine decarboxylase (glyD, now designated gld1)and serine transhydroxymethylase (stm). Because glycine decarboxylaseis a complex of four enzymes, these results are consistent witha mutation in a glycine decarboxylase subunit other than thataffected in the gld1 mutant. The two gld loci were mapped tochromosomes 2 and 5, respectively. 3Present address: Department of Crop and Soil Sciences, MichiganState University, East Lansing, MI 48824, U.S.A. 4Present address: Department of Applied Bioscience, Facultyof Agriculture, Hokkaido University, Kita-Ku, Sapporo, 060 Japan 5Present address: Department of Biology, Carnegie Institutionof Washington, 290 Panama Street, Standford, CA 94305, U.S.A.  相似文献   
65.
Ito  Osamu  Matsunaga  Ryoichi  Tobita  Satoshi  Rao  Theertham P.  Devi  Y. Gayatri 《Plant and Soil》1993,155(1):341-344
A medium-duration pigeonpea cultivar (ICP 1–6) and a hybrid sorghum (CSH 5) were grown on a shallow Alfisol in monocropping and intercropping systems. Using a monolith method, spatial distribution of nodulation, acetylene reduction activity (ARA) and root respiration were measured.The number, mass and ARA of nodules decreased exponentially with distance from the plant base except at the late reproductive stage. Nodulation and ARA tended to be higher in the intercrop than in the monocrop.Respiration rate of roots increased with distance from the plant base and reached a maximum value at about 20–30 cm. The rate was higher in pigeonpea than in sorghum and also higher in intercrop than in monocrop.This study suggests that pigeonpea roots are physiologically more active than sorghum roots, implying that pigeonpea may become a strong competitor for nutrients in the soil when intercropped. The nitrogen-fixing ability of pigeonpea may be enhanced by intercropping because the sorghum rapidly absorbed inorganic N which would otherwise inhibit N2 fixation.  相似文献   
66.
Summary We prepared various TNF- derivatives by protein engineering techniques. Mutant 471, in which 7 N-terminal amino acids were deleted and Pro8Ser9Asp10 was replaced by ArgLysArg, had a 8-fold higher antitumor activity against mouse L929 cells than wild-type TNF-. The additional substitution of Ala156 or Leu157 by more hydrophobic amino acids enhanced the activity of mutant 471. These results suggested that the combinational mutations in the N- and C-terminal regions of TNF- are effective for the improvement of antitumor activity.  相似文献   
67.
68.
69.
70.
The roles of the Na+/H+ exchange system in the development and cessation of reperfusion induced ventricular arrhythmias were studied in the isolated perfused rat heart. The hearts were perfused in the working heart mode with modified Krebs Henseleit bicarbonate (KHB) buffer and whole heart ischemia was induced by a one-way ball valve with 330 beat/min pacing. Ischemia was continued for 15 min followed by 20 min of aerobic reperfusion (control). Amiloride (1.0mM), an inhibitor of the Na+/H+ exchange system, was added to the KHB buffer only during reperfusion (group B) or only during ischemic periods (group C). Electrocardiographic and hemodynamic parameters were monitored throughout the perfusion. Coronary effluent was collected through pulmonary artery cannulation and PO2, PCO2, HCO 3 and pH were measured by blood-gas analyzer.The incidence of reperfusion induced ventricular arrhythmias was 100%, 100% and 0% in control, group B and group C, respectively. The mean onset time of termination of reperfusion arrhythmias was significantly shorter in group B than in control. PCO2 increased from 39.0±0.9 to 89.3±6.0 mmHg at the end of ischemia in control and from 40.6±0.4 to 60.5±5.8 in group C, the difference between groups was statistically significant. HCO 3 level decreased from 21.8±0.1 to 18.3±0.5 mmol/l in control, however, this decrease was significantly inhibited in group C (from 22.0±0.5 to 20.3±0.2). The increase in PCO2 and the decrease in HCO 3 in group B were similar over time to those observed in control. The decrease in pH produced by ischemia was marked in control (from 7.35±0.01 to 6.92±0.04) and group B (from 7.34±0.01 to 6.94±0.02), whereas a decrease in pH was significantly prevented in group C (from 7.34±0.01 to 7.15±0.04). There were no significant differences in PCO2, HCO 3 or pH among the three groups during reperfusion.These experiments provide evidence that amiloride significantly prevented the incidence of reperfusion arrhythmias when added only during ischemia and significantly terminated reperfusion arrhythmias when added only during reperfusion. Amiloride may prevent a decrease in pH, due to alterations in PCO2 and/or HCO 3 . These changes in PCO2 and HCO 3 might be indirectly influenced by inhibition of the Na+/H+ exchange system via Cl/HCO 3 exchange. The mechanism by which amiloride terminates reperfusion arrhythmias seems to involve electrophysiological effects which were not directly addressed in this experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号