首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   10篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   21篇
  2011年   10篇
  2010年   9篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   10篇
  2004年   1篇
  2003年   10篇
  2002年   4篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1990年   4篇
  1985年   1篇
  1980年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
51.
Introgressive hybridization has played a crucial role in the evolution of many plant species, especially polyploids. The duplicated genetic material and wide geographical distribution facilitate hybridization and introgression among polyploid species having either homologous or homoeologous genomes. Such introgression may lead to the production of recombinant genomes that are more difficult to form at the diploid level. Crop genes that have introgressed into wild relatives can increase the capability of the wild relatives to adapt to agricultural environments and compete with crops or to compete with other wild species. Although the transfer of genes from crops into their conspecific immediate wild progenitors has been reported, little is known about spontaneous gene movement from crops to more distantly related species. We describe recent spontaneous DNA introgression from domesticated polyploid wheat into distantly related, wild tetraploid Aegilops peregrina (syn. Aegilops variabilis) and the stabilization of this sequence in wild populations despite not having homologous chromosomes. Our results show that DNA can spontaneously introgress between homoeologous genomes of species of the tribe Triticeae and, in the case of crop-wild relatives, possibly enrich the wild population. These results also emphasize the need for fail-safe mechanisms in transgenic crops to prevent gene flow where there may be ecological risks.  相似文献   
52.
53.
We studied the in-vitro/in-vivo interactions between HCC/HSCs in early and advanced fibrosis-models. Hep3B-mono-cultures secreted high levels of αFetoProtein (αFP). Human-HSCs co-cultured with Hep3B-cells significantly decreased αFP and increased their apoptosis. Confocal-microscopy demonstrated Hep3B-phagocytosis inside the HSCs suggesting a direct cellular-contact mediating anti-tumor effect. Leptin-activated HSCs further suppressed Hep3B-cells with increased ROS and decreased GSH. Following intrahepatic-Hep3B-cell injections, mice with established “advanced liver-fibrosis”; had higher tumor-size and αFP serum-levels as compared to non-fibrotic livers. Mice with “early liver-fibrosis”, which initiated post tumor induction had a significant decrease in tumor and high Malondialdehyde (MDA) serum levels compared to advanced-fibrosis animals.At early-fibrosis stages, activated-HSCs express direct anti-tumor effects by phagocytosis and apoptosis of tumor-cells mediated by oxidative stress.  相似文献   
54.
The human Septin 4 gene (Sept4) encodes two major protein isoforms; Sept4_i1 (H5/PNUTL2) and Sept4_i2/ARTS. Septins have been traditionally studied for their role in cytokinesis and their filament-forming abilities, but subsequently have been implicated in diverse functions, including membrane dynamics, cytoskeletal reorganization, vesicle trafficking, and tumorigenesis. ARTS is localized at mitochondria and promotes programmed cell death (apoptosis). These features distinguish ARTS from any other known human septin family member. This review compares the structural and functional properties of ARTS with other septins. In addition, it describes how a combination of two distinct promoters, differential splicing, and intron retention leads to the generation of two different Sept4 variants with diverse biological activity.  相似文献   
55.
A type III secretion system (T3SS) in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJKIM) has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJKIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJKIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJKIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJCO92, YopJKIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJKIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJCO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro-inflammatory form of apoptosis may represent an early innate immune response to highly virulent pathogens such as Y. pestis KIM that have evolved an enhanced ability to inhibit host signaling pathways.  相似文献   
56.
In this study we examined the effects of proteasome inhibitors on cell apoptosis in TRAIL-resistant glioma cells and glioma stem cells (GSCs). Treatment with proteasome inhibitors and TRAIL induced apoptosis in all the resistant glioma cells and GSCs, but not in astrocytes and neural progenitor cells. Since PKCε has been implicated in the resistance of glioma cells to TRAIL, we examined its role in TRAIL and proteasome inhibitor-induced apoptosis. We found that TRAIL did not induce significant changes in the expression of PKCε, whereas a partial decrease in PKCε expression was obtained by proteasome inhibitors. A combined treatment of TRAIL and proteasome inhibitors induced accumulation of the catalytic fragment of PKCε and significantly and selectively decreased its protein and mRNA levels in the cancer but not in normal cells. Overexpression of PKCε partially inhibited the apoptotic effect of the proteasome inhibitors and TRAIL, and the caspase-resistant PKCεD383A mutant exerted a stronger inhibitory effect. Silencing of PKCε induced cell apoptosis in both glioma cells and GSCs, further supporting its role in cell survival. TRAIL and the proteasome inhibitors decreased the expression of AKT and XIAP in a PKCε-dependent manner and overexpression of these proteins abolished the apoptotic effect of this treatment. Moreover, silencing of XIAP sensitized glioma cells to TRAIL. Our results indicate that proteasome inhibitors sensitize glioma cells and GSCs to TRAIL by decreasing the expression of PKCε, AKT and XIAP. Combining proteasome inhibitors with TRAIL may be useful therapeutically in the treatment of gliomas and the eradication of GSCs.  相似文献   
57.
We report that the activation level of AMP-dependent protein kinase AMPK is elevated in cancer cell lines as a hallmark of their transformed state. In OVCAR3 and A431 cells, c-Src signals through protein kinase Cα, phospholipase Cγ, and LKB1 to AMPK. AMPK controls internal ribosome entry site (IRES) dependent translation in these cells. We suggest that AMPK activation via PKC might be a general mechanism to regulate IRES-dependent translation in cancer cells.  相似文献   
58.
59.
60.

Introduction

A role for mannose binding lectin (MBL) in autoimmune diseases has been demonstrated earlier and elevated level of MBL has been shown in systemic lupus erythematosus (SLE) patients. In the current study, we investigated MBL as a potential biomarker for disease activity in SLE.

Methods

In a case control study SLE patients (93 females) and 67 age, sex, ethnicity matched healthy controls were enrolled. Plasma MBL levels were quantified by enzyme linked immunosorbent assay (ELISA). Clinical, serological and other markers of disease activity (C3, C4 and anti-dsDNA) were measured by standard laboratory procedures.

Results

Plasma MBL levels were significantly high in SLE patients compared to healthy controls (P < 0.0001). MBL levels were variable in different clinical categories of SLE. Lower levels were associated with musculoskeletal and cutaneous manifestations (P = 0.002), while higher and intermediate MBL levels were significantly associated with nephritis in combination with other systemic manifestations (P = 0.01 and P = 0.04 respectively). Plasma MBL correlated with systemic lupus erythematosus disease activity index (SLEDAI) (P = 0.0003, r = 0.36), anti-dsDNA (P < 0.0001, r = 0.54), proteinuria (P < 0.0001, r = 0.42) and negatively correlated with C3 (P = 0.007, r = -0.27) and C4 (P = 0.01, r = -0.29).

Conclusions

Plasma MBL is a promising marker in the assessment of SLE disease activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号