首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13768篇
  免费   1355篇
  国内免费   10篇
  2024年   12篇
  2023年   98篇
  2022年   71篇
  2021年   582篇
  2020年   266篇
  2019年   331篇
  2018年   393篇
  2017年   333篇
  2016年   590篇
  2015年   927篇
  2014年   922篇
  2013年   1056篇
  2012年   1356篇
  2011年   1307篇
  2010年   769篇
  2009年   619篇
  2008年   838篇
  2007年   800篇
  2006年   788篇
  2005年   626篇
  2004年   566篇
  2003年   504篇
  2002年   461篇
  2001年   92篇
  2000年   54篇
  1999年   79篇
  1998年   92篇
  1997年   46篇
  1996年   60篇
  1995年   29篇
  1994年   42篇
  1993年   43篇
  1992年   45篇
  1991年   27篇
  1990年   32篇
  1989年   26篇
  1987年   16篇
  1986年   11篇
  1985年   20篇
  1984年   22篇
  1983年   12篇
  1982年   12篇
  1981年   13篇
  1980年   12篇
  1979年   13篇
  1978年   14篇
  1977年   14篇
  1975年   10篇
  1974年   9篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
992.
Accurate assessment of species identity is fundamental for conservation biology. Using molecular markers from the mitochondrial and nuclear genomes, we discovered that many putatively native populations of greenback cutthroat trout (Oncorhynchus clarkii stomias) comprised another subspecies of cutthroat trout, Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). The error can be explained by the introduction of Colorado River cutthroat trout throughout the native range of greenback cutthroat trout in the late 19th and early 20th centuries by fish stocking activities. Our results suggest greenback cutthroat trout within its native range is at a higher risk of extinction than ever before despite conservation activities spanning more than two decades.  相似文献   
993.
The genetic basis of individual-recognition signals in the mouse   总被引:8,自引:0,他引:8  
The major histocompatibility complex (MHC) is widely assumed to be a primary determinant of individual-recognition scents in many vertebrates [1-6], but there has been no functional test of this in animals with normal levels of genetic variation. Mice have evolved another polygenic and highly polymorphic set of proteins for scent communication, the major urinary proteins (MUPs) [7-12], which may provide a more reliable identity signature ([13, 14] and A.L. Sherborne, M.D.T., S. Paterson, F.J., W.E.R.O., P. Stockley, R.J.B., and J.L.H., unpublished data). We used female preference for males that countermark competitor male scents [15-17] to test the ability of wild-derived mice to recognize individual males differing in MHC or MUP type on a variable genetic background. Differences in MHC type were not used for individual recognition. Instead, recognition depended on a difference in MUP type, regardless of other genetic differences between individuals. Recognition also required scent contact, consistent with detection of involatile components through the vomeronasal system [6, 18]. Other differences in individual scent stimulated investigation but did not result in individual recognition. Contrary to untested assumptions of a vertebrate-wide mechanism based largely on MHC variation, mice use a species-specific [12] individual identity signature that can be recognized reliably despite the complex internal and external factors that influence scents [2]. Specific signals for genetic identity recognition in other species now need to be investigated.  相似文献   
994.
Cd36 is a small-molecular-weight integral membrane protein expressed in a diverse, but select, range of cell types. It has an equally diverse range of ligands and physiological functions, which has implicated Cd36 in a number of diseases including insulin resistance, diabetes, and, most notably, atherosclerosis. The protein is reported to reside in detergent-resistant microdomains within the plasma membrane and to form homo- and hetero-intermolecular interactions. These data suggest that this class B scavenger receptor may gain functionality for ligand binding, and/or ligand internalization, by formation of protein complexes at the cell surface. Here, we have overexpressed Cd36 in insect cells, purified the recombinant protein to homogeneity, and analyzed its stability and solubility in a variety of nonionic and zwitterionic detergents. Octylglucoside conferred the greatest degree of stability, and by analytical ultracentrifugation we show that the protein is monomeric. A solid-phase ligand-binding assay demonstrated that the purified monomeric protein retains high affinity for acetylated and oxidized low-density lipoproteins. Therefore, no accessory proteins are required for interaction with ligand, and binding is a property of the monomeric fold of the protein. Thus, the highly purified and functional Cd36 should be suitable for crystallization in octylglucoside, and the in vitro ligand-binding assay represents a promising screen for identification of bioactive molecules targeting atherogenesis at the level of ligand binding.  相似文献   
995.
Global virulence regulation networks in phytopathogenic bacteria   总被引:3,自引:0,他引:3  
  相似文献   
996.
997.
The Arabidopsis thaliana lysyl tRNA synthetase (AtKRS) structurally and functionally resembles the well-characterized prokaryotic class IIb KRS, including the propensity to aminoacylate tRNA(Lys) with suboptimal identity elements, as well as non-cognate tRNAs. Transient expression of AtKRS in carrot cells promotes aminoacylation of such tRNAs in vivo and translational recoding of lysine at nonsense codons. Stable expression of AtKRS in Zea mays causes translational recoding of lysine into zeins, significantly enriching the lysine content of grain.  相似文献   
998.
A series of analogues of the dopamine D2 receptor antagonist L741,626 were synthesized and evaluated for binding and function at D2 family receptor subtypes. Several analogues showed comparable binding profiles to the parent ligand, however, in general, chemical modification served to reduce D2 binding affinity and selectivity.  相似文献   
999.
Disease-associated prion protein oligomers inhibit the 26S proteasome   总被引:7,自引:0,他引:7  
The mechanism of cell death in prion disease is unknown but is associated with the production of a misfolded conformer of the prion protein. We report that disease-associated prion protein specifically inhibits the proteolytic beta subunits of the 26S proteasome. Using reporter substrates, fluorogenic peptides, and an activity probe for the beta subunits, this inhibitory effect was demonstrated in pure 26S proteasome and three different cell lines. By challenge with recombinant prion and other amyloidogenic proteins, we demonstrate that only the prion protein in a nonnative beta sheet conformation inhibits the 26S proteasome at stoichiometric concentrations. Preincubation with an antibody specific for aggregation intermediates abrogates this inhibition, consistent with an oligomeric species mediating this effect. We also present evidence for a direct relationship between prion neuropathology and impairment of the ubiquitin-proteasome system (UPS) in prion-infected UPS-reporter mice. Together, these data suggest a mechanism for intracellular neurotoxicity mediated by oligomers of misfolded prion protein.  相似文献   
1000.
The effect of TNF-alpha on liver Na(+)-K(+) ATPase was studied in Sprague-Dawley rats and in HepG2 cells. TNF-alpha was injected intraperitoneally to rats and 4h later the liver was isolated and the activity and protein expression of hepatic Na(+)-K(+) ATPase studied. The cytokine caused a significant down-regulation of the ATPase and a decrease in its activity. This effect disappeared in presence of indomethacin, an inhibitor of COX enzymes, and PGE2 injected to the animals imitated the effect of TNF-alpha. The observed in vivo effects of TNF and PGE2 on the pump appeared again when HepG2 cells were treated with the cytokine or the prostaglandin. The application of different agonist and antagonist to EP receptors showed that the effect of PGE2 is mediated via EP2 receptors. It was concluded that TNF-alpha induces in hepatocytes, PGE2 production which in turn reduces the activity and protein expression of the Na(+)-K(+) ATPase by activating EP2 receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号