首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8281篇
  免费   739篇
  2023年   79篇
  2022年   68篇
  2021年   323篇
  2020年   190篇
  2019年   241篇
  2018年   276篇
  2017年   240篇
  2016年   368篇
  2015年   569篇
  2014年   551篇
  2013年   673篇
  2012年   790篇
  2011年   726篇
  2010年   461篇
  2009年   360篇
  2008年   492篇
  2007年   432篇
  2006年   390篇
  2005年   335篇
  2004年   316篇
  2003年   269篇
  2002年   236篇
  2001年   38篇
  2000年   34篇
  1999年   38篇
  1998年   62篇
  1997年   35篇
  1996年   31篇
  1995年   27篇
  1994年   23篇
  1993年   25篇
  1992年   10篇
  1991年   21篇
  1990年   12篇
  1989年   13篇
  1988年   12篇
  1987年   20篇
  1986年   17篇
  1985年   21篇
  1984年   22篇
  1983年   20篇
  1982年   19篇
  1981年   10篇
  1980年   10篇
  1979年   18篇
  1978年   8篇
  1977年   7篇
  1976年   8篇
  1974年   9篇
  1972年   9篇
排序方式: 共有9020条查询结果,搜索用时 15 毫秒
991.
992.
The genus Caldicellulosiruptor contains extremely thermophilic bacteria that grow on plant polysaccharides. The genomes of Caldicellulosiruptor species reveal certain surface layer homology (SLH) domain proteins that have distinguishing features, pointing to a role in lignocellulose deconstruction. Two of these proteins in Caldicellulosiruptor saccharolyticus (Csac_0678 and Csac_2722) were examined from this perspective. In addition to three contiguous SLH domains, the Csac_0678 gene encodes a glycoside hydrolase family 5 (GH5) catalytic domain and a family 28 carbohydrate-binding module (CBM); orthologs to Csac_0678 could be identified in all genome-sequenced Caldicellulosiruptor species. Recombinant Csac_0678 was optimally active at 75°C and pH 5.0, exhibiting both endoglucanase and xylanase activities. SLH domain removal did not impact Csac_0678 GH activity, but deletion of the CBM28 domain eliminated binding to crystalline cellulose and rendered the enzyme inactive on this substrate. Csac_2722 is the largest open reading frame (ORF) in the C. saccharolyticus genome (predicted molecular mass of 286,516 kDa) and contains two putative sugar-binding domains, two Big4 domains (bacterial domains with an immunoglobulin [Ig]-like fold), and a cadherin-like (Cd) domain. Recombinant Csac_2722, lacking the SLH and Cd domains, bound to cellulose and had detectable carboxymethylcellulose (CMC) hydrolytic activity. Antibodies directed against Csac_0678 and Csac_2722 confirmed that these proteins bound to the C. saccharolyticus S-layer. Their cellular localization and functional biochemical properties indicate roles for Csac_0678 and Csac_2722 in recruitment and hydrolysis of complex polysaccharides and the deconstruction of lignocellulosic biomass. Furthermore, these results suggest that related SLH domain proteins in other Caldicellulosiruptor genomes may also be important contributors to plant biomass utilization.  相似文献   
993.
994.
Heavy metals (HMs) are environmental pollutants of great concern to humans because of their high potential toxicity. Lead is a HM that is present in the soil in very small amounts, but anthropogenic activities have increased its content in some locations, which can make these areas unproductive or inappropriate for crop production. However, there are some plants that can grow in contaminated soils and, thus, can be useful for the removal or stabilisation of such contaminants. In addition, plants that are not able to tolerate high concentrations of HMs in the soil can become tolerant or increase their performance when associated with arbuscular mycorrhizal (AM) fungi. Accordingly, this study was carried out to verify whether the inoculation of Glomus etunicatum, an AM fungus species, in Calopogonium mucunoides would influence plant tolerance to increasing concentrations of Pb in the soil. The experimental design was completely randomised, in a 2 × 4 factorial design, and the treatments consisted of inoculation (or not) with the AM fungus, G. etunicatum, and the addition of four Pb concentrations (0, 250, 500 or 1,000 mg kg−1) to the soil. The results showed that the association of C. mucunoides with G. etunicatum promoted biomass production, and nutrient uptake (P, S and Fe) was also positively influenced by mycorrhization. The malondialdehyde content was higher in non-mycorrhizal leaves, suggesting a reduction in the damage to membranes by lipid peroxidation in plants associated with mycorrhizae. However, the Pb concentration in the shoots did not differ between the mycorrhizal and non-mycorrhizal plants. The results of our study suggest that the AM symbiosis can be considered very effective in contributing to the tolerance of C. mucunoides to Pb.  相似文献   
995.
We review the conservation issues facing migratory shorebird populations that breed in temperate regions and use wetlands in the non‐breeding season. Shorebirds are excellent model organisms for understanding ecological, behavioural and evolutionary processes and are often used as indicators of wetland health. A global team of experienced shorebird researchers identified 45 issues facing these shorebird populations, and divided them into three categories (natural, current anthropogenic and future issues). The natural issues included megatsunamis, volcanoes and regional climate changes, while current anthropogenic threats encompassed agricultural intensification, conversion of tidal flats and coastal wetlands by human infrastructure developments and eutrophication of coastal systems. Possible future threats to shorebirds include microplastics, new means of recreation and infectious diseases. We suggest that this review process be broadened to other taxa to aid the identification and ranking of current and future conservation actions.  相似文献   
996.
The present experimental work is dedicated to the analysis of the effect of walking on the thermal insulation of the air layer (I a ) and on the convective heat transfer coefficients (h conv ) of the human body. Beyond the standing static posture, three step rates were considered: 20, 30 and 45 steps/min. This corresponds to walking speeds of approximately 0.23, 0.34 and 0.51 m/s, respectively. The experiments took place in a climate chamber with an articulated thermal manikin with 16 independent parts. The indoor environment was controlled through the inner wall temperatures since the objective of the tests was restricted to the influence of the walking movements under calm conditions. Five set points were selected: 10, 15, 20, 25 and 30°C, and the operative temperature within the test chamber varied between 11.9 and 29.6°C. The highest and lowest I a values obtained were equal to 0.87 and 0.71 clo, respectively, and the reduction in insulation due to walking ranged between 9.8 and 11.5%. The convective coefficients (h conv ) for the whole body and for the different body segments were also determined for each step rate. In the case of the whole body, for the standing static reference posture, the mean value of h conv was equal to 3.3 W/m2°C and a correlation [Nu = Nu(Gr)] for natural convection is also presented in good agreement with previous results. For the other postures, the values of h conv were equal to 3.7, 3.9 and 4.2 W/m2°C, respectively for 20, 30 and 45 steps/min.  相似文献   
997.
The environmental changes caused by climate change represent a significant challenge to human societies. One part of this challenge will be greater heat-related mortality. Populations in the northern hemisphere will experience temperature increases exceeding the global average, but whether this will increase or decrease total temperature-related mortality burdens is debated. Here, we use distributed lag modeling to characterize temperature-mortality relationships in 15 Canadian cities. Further, we examine historical trends in temperature variation across Canada. We then develop city-specific general linear models to estimate change in high- and low-temperature-related mortality using dynamically downscaled climate projections for four future periods centred on 2040, 2060 and 2080. We find that the minimum mortality temperature is frequently located at approximately the 75th percentile of the city’s temperature distribution, and that Canadians currently experience greater and longer lasting risk from cold-related than heat-related mortality. Additionally, we find no evidence that temperature variation is increasing in Canada. However, the projected increased temperatures are sufficient to change the relative levels of heat- and cold-related mortality in some cities. While most temperature-related mortality will continue to be cold-related, our models predict that higher temperatures will increase the burden of annual temperature-related mortality in Hamilton, London, Montreal and Regina, but result in slight to moderate decreases in the burden of mortality in the other 11 cities investigated.  相似文献   
998.
Chen Y  Milam SL  Erickson HP 《Biochemistry》2012,51(14):3100-3109
We have investigated the inhibition by SulA of the assembly of Escherichia coli FtsZ. Using quantitative GTPase and fluorescence assays, we found that SulA inhibition resulted in an increase in the apparent critical concentration for FtsZ assembly. The increase in apparent critical concentration was always less than the total amount of SulA added, suggesting that the association of SulA and FtsZ was of modest affinity. Isothermal titration calorimetry gave a value of 0.78 μM for the dissociation constant of the FtsZ-SulA complex, similar in magnitude to the 0.72 μM critical concentration of FtsZ protofilament assembly at steady state. We modeled the reaction as an equilibrium competition between (a) FtsZ subunits assembling onto protofilaments or (b) binding SulA. When FtsZ was assembled in GMPCPP or in EDTA, the inhibition by SulA was reduced. The reduced inhibition could be explained by a 3- and 10-fold weaker binding of SulA to FtsZ. The mutant D212G, which has no GTPase activity and therefore minimal subunit cycling, was shown here to assemble one-stranded protofilaments, and the assembly was blocked by SulA. We also assayed the SulA and FtsZ proteins from Pseudomonas. The SulA inhibition was stronger than with the E. coli proteins, and the model indicated a 5-fold higher affinity of Pseudomonas SulA for FtsZ.  相似文献   
999.
The increase in multidrug resistant bacteria has sparked an interest in the development of novel antibiotics. Antimicrobial peptides that operate by crossing the cell membrane may also have the potential to deliver drugs to intracellular targets. Buforin 2 (BF2) is an antimicrobial peptide that shares sequence identity with a fragment of histone subunit H2A and whose bactericidal mechanism depends on membrane translocation and DNA binding. Previously, novel histone-derived antimicrobial peptides (HDAPs) were designed based on properties of BF2, and DesHDAP1 and DesHDAP3 showed significant antibacterial activity. In this study, their DNA binding, permeabilization, and translocation abilities were assessed independently and compared to antibacterial activity to determine whether they share a mechanism with BF2. To investigate the importance of proline in determining the peptides' mechanisms of action, proline to alanine mutants of the novel peptides were generated. DesHDAP1, which shows significant similarities to BF2 in terms of secondary structure, translocates effectively across lipid vesicle and bacterial membranes, while the DesHDAP1 proline mutant shows reduced translocation abilities and antimicrobial potency. In contrast, both DesHDAP3 and its proline mutant translocate poorly, though the DesHDAP3 proline mutant is more potent. Our findings suggest that a proline hinge can promote membrane translocation in some peptides, but that the extent of its effect on permeabilization depends on the peptide's amphipathic properties. Our results also highlight the different antimicrobial mechanisms exhibited by histone-derived peptides and suggest that histones may serve as a source of novel antimicrobial peptides with varied properties.  相似文献   
1000.
Meconium ileus, intestinal obstruction in the newborn, is caused in most cases by CFTR mutations modulated by yet-unidentified modifier genes. We now show that in two unrelated consanguineous Bedouin kindreds, an autosomal-recessive phenotype of meconium ileus that is not associated with cystic fibrosis (CF) is caused by different homozygous mutations in GUCY2C, leading to a dramatic reduction or fully abrogating the enzymatic activity of the encoded guanlyl cyclase 2C. GUCY2C is a transmembrane receptor whose extracellular domain is activated by either the endogenous ligands, guanylin and related peptide uroguanylin, or by an external ligand, Escherichia coli (E. coli) heat-stable enterotoxin STa. GUCY2C is expressed in the human intestine, and the encoded protein activates the CFTR protein through local generation of cGMP. Thus, GUCY2C is a likely candidate modifier of the meconium ileus phenotype in CF. Because GUCY2C heterozygous and homozygous mutant mice are resistant to E. coli STa enterotoxin-induced diarrhea, it is plausible that GUCY2C mutations in the desert-dwelling Bedouin kindred are of selective advantage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号