首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   14篇
  国内免费   1篇
  2024年   2篇
  2023年   8篇
  2022年   14篇
  2021年   34篇
  2020年   15篇
  2019年   28篇
  2018年   37篇
  2017年   18篇
  2016年   25篇
  2015年   25篇
  2014年   32篇
  2013年   30篇
  2012年   25篇
  2011年   34篇
  2010年   15篇
  2009年   15篇
  2008年   16篇
  2007年   14篇
  2006年   20篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
排序方式: 共有479条查询结果,搜索用时 93 毫秒
31.
32.
We report the case of a patient with severe diffuse peripheral vascular disease, coronary artery disease, congestive heart failure, and gastrointestinal bleeding with a pseudoaneurysm of descending thoracic aorta who underwent successful Dacron patch aortoplasty. She was not a candidate for stent-graft repair because of poor access. Using a partial occluding clamp, the pseudoaneurysm was excised and the aorta repaired with a 3.5-cm Dacron patch. She was discharged home in 7 days and has successfully undergone stenting of the left subclavian artery and right and left carotid endarterectomy.  相似文献   
33.
Functional & Integrative Genomics - This humble effort highlights the intricate details of metagenomics in a simple, poetic, and rhythmic way. The paper enforces the significance of the...  相似文献   
34.
35.
Molecular Biology Reports - Schizophyllum commune is a well-known mushroom forming fungi which is an edible one due to its nutritive value. It exhibits a special wood degrading mechanism to grow in...  相似文献   
36.
Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.  相似文献   
37.
Acinetobacter baumannii is an alarming nosocomial pathogen that is resistant to multiple drugs. The pathogen is forefront of scientific attention because of high mortality and morbidity found for its complications in the past decade. As a consequence, identification of novel drug candidates and subsequent designing of novel chemical scaffolds is an imperative need of time. In the present study, we used a recently reported structure of BfmR enzyme and performed structure based virtual screening, MD simulation and binding free energies calculations. MD simulation revealed a profound movement of the best-characterized inhibitor towards the α4-β5-α5 face of the enzyme receiver domain, thus indicating its high affinity for this site compared to phosphorylation. Furthermore, it was observed that the enzyme and enzyme-inhibitor complex have high structure stability with mean RMSD of 1.2 and 1.1 Å, respectively. Binding free energy calculations for the complex unraveled high stability with MMGBSA score of ?26.21?kcal/mol and MMPBSA score of ?1.47?kcal/mol. Van der Waal energy was found highly favorable with value of ?30.25?kcal/mol and dominated significantly the overall binding energy. Furthermore, a novel WaterSwap assay was used to circumvent the limitations of MMGB/PBSA that complements the inhibitor affinity for enzyme active pocket as depicted by the low convergence of Bennett, TI and FEP algorithms. Results yielded from this study will not only give insight into the phenomena of inhibitor movement towards the enzyme receiver domain, but will also provide a useful baseline for designing derivatives with improved biological and pharmacokinetics profiles.

Communicated by Ramaswamy H. Sarma  相似文献   

38.
Proteinase-activated receptor 2 (PAR-2) is a G protein–coupled receptor activated by both trypsin and a specific agonist peptide, SLIGKV-NH2. It has been linked to various pathologies, including pain and inflammation. Several peptide and peptidomimetic agonizts for PAR-2 have been developed exhibiting high potency and efficacy. However, the number of PAR-2 antagonists is smaller. We screened the Food and Drug Administration library of approved compounds to retrieve novel antagonists for repositioning in the PAR-2 structure. The most efficacious compound bicalutamide bound to the PAR-2 binding groove near the extracellular domain as observed in the in silico studies. Further, it showed reduced Ca2+ release in trypsin activated cells in a dose-dependent manner. Hence, bicalutamide is a novel and potent PAR-2 antagonist which could be therapeutically useful in blocking multiple pathways diverging from PAR-2 signaling. Further, the novel scaffold of bicalutamide represents a new molecular structure for PAR-2 antagonism and can serve as a basis for further drug development.  相似文献   
39.
The benefits associated with resveratrol (Resv; 3,4′,5-trihydroxy-trans-stilbene) are known for a long time. The therapeutic properties of Resv are observed in diseases like cancer, neurological disorders, atherosclerosis, aging, inflammation, etc. Multiple studies suggest that the beneficial properties of Resv are due to its binding to targets in multiple pathways. The same has been reflected in inflammation, where Resv has been shown to inhibit nuclear factor κ light-chain enhancer of activated B cells in the toll-like receptor 4 (TLR4) pathway. There are multiple cellular targets which bind to Resv, however the mode and the key interactions involved remain elusive for many of them. In the current work, we have investigated the structural insights of Resv with three of its binding partners involved in the inflammatory TLR4 signaling pathway. Through a structure-based modelling and molecular dynamics study, we have unraveled the molecular and atomic interactions involved in the Resv-binary complexes of inhibitor of κB kinase, cyclooxygeanse-2, and tank-binding kinase I, all three of which are key players in TLR4 inflammatory signaling. This study is the latest addition to the investigations of the structural partners of Resv and its molecular interactions.  相似文献   
40.
The ability of Calabrian pine bark wastes (Pinus brutia Ten) for the removal of Fe(II) ions from aqueous solution at different concentrations and temperatures at a fixed pH was investigated. While the amounts of Fe(II) ions adsorbed onto the bark increased with increasing concentration, it increased slightly with increasing the temperature. Kinetics studies showed that adsorption process followed the first-order kinetic model as well as intra-particle diffusion kinetics. Adsorption isotherm followed both Langmuir and Freundlich models. And it was determined that the adsorption was favorable from a dimensionless factor, R(L). Furthermore, the thermodynamic parameters demonstrated that the removal of Fe(II) by the bark was a physical process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号