首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31665篇
  免费   1639篇
  国内免费   42篇
  2023年   225篇
  2022年   343篇
  2021年   1009篇
  2020年   587篇
  2019年   612篇
  2018年   943篇
  2017年   914篇
  2016年   1143篇
  2015年   1407篇
  2014年   1686篇
  2013年   2337篇
  2012年   2488篇
  2011年   2281篇
  2010年   1345篇
  2009年   1200篇
  2008年   1396篇
  2007年   1379篇
  2006年   1162篇
  2005年   1039篇
  2004年   919篇
  2003年   770篇
  2002年   700篇
  2001年   620篇
  2000年   568篇
  1999年   484篇
  1998年   218篇
  1997年   179篇
  1996年   178篇
  1995年   189篇
  1994年   156篇
  1993年   150篇
  1992年   366篇
  1991年   337篇
  1990年   309篇
  1989年   271篇
  1988年   285篇
  1987年   248篇
  1986年   222篇
  1985年   254篇
  1984年   242篇
  1983年   159篇
  1982年   149篇
  1981年   145篇
  1980年   132篇
  1979年   200篇
  1978年   143篇
  1977年   135篇
  1974年   146篇
  1973年   119篇
  1972年   126篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A novel noninvasive genomic DNA isolation protocol from fecal tissue, by the proteinase K digestion and guanidine hydrochloride extraction method, was assessed for the genotyping of cattle and buffalo. The epithelial tissues present on the surface of the feces were used as source for isolation of genomic DNA. The DNA isolated from fecal tissue was found to be similar as those obtained from other body tissues such as skin, brain, liver, kidney, and muscle. The quality of DNA was checked by agarose gel electrophoresis and polymerase chain reaction (PCR). We successfully amplified a 320 bp MHC class II DRB gene and a 125 bp mt-DNA D-loop region from isolated genomic DNA of cattle. Thus, the DNA isolated using this method was suitable for common molecular biology methods, such as restriction enzyme digestion and genotyping of dairy animals through PCR.  相似文献   
992.
Several oral vaccination studies have been undertaken to evoke a better protection against white spot syndrome virus (WSSV), a major shrimp pathogen. Formalin-inactivated virus and WSSV envelope protein VP28 were suggested as candidate vaccine components, but their uptake mechanism upon oral delivery was not elucidated. In this study the fate of these components and of live WSSV, orally intubated to black tiger shrimp (Penaeus monodon) was investigated by immunohistochemistry, employing antibodies specific for VP28 and haemocytes. The midgut has been identified as the most prominent site of WSSV uptake and processing. The truncated recombinant VP28 (rec-VP28), formalin-inactivated virus (IVP) and live WSSV follow an identical uptake route suggested as receptor-mediated endocytosis that starts with adherence of luminal antigens at the apical layers of gut epithelium. Processing of internalized antigens is performed in endo-lysosomal compartments leading to formation of supra-nuclear vacuoles. However, the majority of WSSV-antigens escape these compartments and are transported to the inter-cellular space via transcytosis. Accumulation of the transcytosed antigens in the connective tissue initiates aggregation and degranulation of haemocytes. Finally the antigens exiting the midgut seem to reach the haemolymph. The nearly identical uptake pattern of the different WSSV-antigens suggests that receptors on the apical membrane of shrimp enterocytes recognize rec-VP28 efficiently. Hence the truncated VP28 can be considered suitable for oral vaccination, when the digestion in the foregut can be bypassed.  相似文献   
993.
The present study was conducted to assess the genetic diversity, population structure, and relatedness in Indian red jungle fowl (RJF, Gallus gallus murgi) from northern India and three domestic chicken populations (gallus gallus domesticus), maintained at the institute farms, namely White Leghorn (WL), Aseel (AS) and Red Cornish (RC) using 25 microsatellite markers. All the markers were polymorphic, the number of alleles at each locus ranged from five (MCW0111) to forty-three (LEI0212) with an average number of 19 alleles per locus. Across all loci, the mean expected heterozygosity and polymorphic information content were 0.883 and 0.872, respectively. Population-specific alleles were found in each population. A UPGMA dendrogram based on shared allele distances clearly revealed two major clusters among the four populations; cluster I had genotypes from RJF and WL whereas cluster II had AS and RC genotypes. Furthermore, the estimation of population structure was performed to understand how genetic variation is partitioned within and among populations. The maximum ?K value was observed for K = 4 with four identified clusters. Furthermore, factorial analysis clearly showed four clustering; each cluster represented the four types of population used in the study. These results clearly, demonstrate the potential of microsatellite markers in elucidating the genetic diversity, relationships, and population structure analysis in RJF and domestic chicken populations.  相似文献   
994.
Cell–cell and cell–matrix adhesions are fundamental to numerous physiological processes, including angiogenesis, tumourigenesis, metastatic spreading and wound healing. We use cellular potts model to computationally predict the organisation of cells within a 3D matrix. The energy potentials regulating cell–cell (JCC) and cell–matrix (JMC) adhesive interactions are systematically varied to represent different, biologically relevant adhesive conditions. Chemotactically induced cell migration is also addressed. Starting from a cluster of cells, variations in relative cell adhesion alone lead to different cellular patterns such as spreading of metastatic tumours and angiogenesis. The combination of low cell–cell adhesion (high JCC) and high heterotypic adhesion (low JMC) favours the fragmentation of the original cluster into multiple, smaller cell clusters (metastasis). Conversely, cellular systems exhibiting high-homotypic affinity (low JCC) preserve their original configuration, avoiding fragmentation (organogenesis). For intermediate values of JCC and JMC (i.e. JCC/JMC ~ 1), tubular and corrugated structures form. Fully developed vascular trees are assembled only in systems in which contact-inhibited chemotaxis is activated upon cell contact. Also, the rate of secretion, diffusion and sequestration of chemotactic factors, cell deformability and motility do not significantly affect these trends. Further developments of this computational model will predict the efficacy of therapeutic interventions to modulate the diseased microenvironment by directly altering cell cohesion.  相似文献   
995.
Haemodynamics is believed to play an important role in the initiation, growth and rupture of intracranial aneurysms. In this context, computational haemodynamics has been extensively used in an effort to establish correlations between flow variables and clinical outcome. It is common practice in the application of Dirichlet boundary conditions at domain inlets to specify transient velocities as either a flat (plug) profile or a spatially developed profile based on Womersley's analytical solution. This paper provides comparative haemodynamics measures for three typical cerebral aneurysms.

Three dimentional rotational angiography images of aneurysms at three common locations, viz. basilar artery tip, internal carotid artery and middle cerebral artery were obtained. The computational tools being developed in the European project @neurIST were used to reconstruct the fluid domains and solve the unsteady Navier–Stokes equations, using in turn Womersley and plug-flow inlet velocity profiles. The effects of these assumptions were analysed and compared in terms of relevant haemodynamic variables within the aneurismal sac. For the aneurysm at the basilar tip geometries with different extensions of the afferent vasculature were considered to study the plausibility of a fully-developed axial flow at the inlet boundaries.

The study shows that assumptions made on the velocity profile while specifying inlet boundary conditions have little influence on the local haemodynamics in the aneurysm, provided that a sufficient extension of the afferent vasculature is considered and that geometry is the primary determinant of the flow field within the aneurismal sac. For real geometries the Womersley profile is at best an unnecessary over-complication, and may even be worse than the plug profile in some anatomical locations (e.g. basilar confluence).  相似文献   
996.
Aminopeptidase B, an arginyl aminopeptidase, was purified from goat brain with a purification factor of ~280 and a yield of 2.7%. It was entrapped in calcium alginate together with bovine serum albumin. The optimal conditions for immobilization for maximum activity yield were 1% CaCl2 and 2.5% alginate. The immobilized enzyme retained ~62% of its initial activity and could be used for five successive batch reactions with retention of 30% of the initial activity. The pH and temperature optima of the free and immobilized enzyme were pH 7.4, 45°C and pH 7.8, 50°C respectively, while the pH and thermal stability as well as the stability of the enzyme in organic solvents were improved significantly after entrapment. The Km value for the immobilized enzyme was about twofold higher than that of the soluble enzyme. Because of this increased stability, the immobilized enzyme may be useful in the meat processing industry.  相似文献   
997.
Vascular support structures are important devices for treating valve stenosis. A large population of patients is treated for valvular disease and the preferred mode of treatment is percutaneous valve replacement. Stent devices are proving to be an improved technology in minimally invasive cardiac surgery. This new technology provides highly effective results at minimal cost and with a short duration of hospitalisation. Stents as a supporting structure for tissue valves have evolved over the years into remarkably useful and effective devices. During this process, a number of specific designs have come and gone, and a few have remained. Many design changes were successful, and many were not. This article describes the merits and demerits of various stent designs and details the specific reasons why a particular novel design is expected to be the most suitable implant during and after percutaneous aortic valve replacement.  相似文献   
998.
Potato (Solanum tuberosum) multicystatin (PMC) is a unique cystatin composed of eight repeating units, each capable of inhibiting cysteine proteases. PMC is a composite of several cystatins linked by trypsin-sensitive (serine protease) domains and undergoes transitions between soluble and crystalline forms. However, the significance and the regulatory mechanism or mechanisms governing these transitions are not clearly established. Here, we report the 2.2-Å crystal structure of the trypsin-resistant PMC core consisting of the fifth, sixth, and seventh domains. The observed interdomain interaction explains PMC’s resistance to trypsin and pH-dependent solubility/aggregation. Under acidic pH, weakening of the interdomain interactions exposes individual domains, resulting in not only depolymerization of the crystalline form but also exposure of cystatin domains for inhibition of cysteine proteases. This in turn allows serine protease–mediated fragmentation of PMC, producing ∼10-kD domains with intact inhibitory capacity and faster diffusion, thus enhancing PMC’s inhibitory ability toward cysteine proteases. The crystal structure, light-scattering experiments, isothermal titration calorimetry, and site-directed mutagenesis confirmed the critical role of pH and N-terminal residues in these dynamic transitions between monomer/polymer of PMC. Our data support a notion that the pH-dependent structural regulation of PMC has defense-related implications in tuber physiology via its ability to regulate protein catabolism.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号