首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1916篇
  免费   100篇
  国内免费   1篇
  2024年   4篇
  2023年   16篇
  2022年   21篇
  2021年   45篇
  2020年   23篇
  2019年   30篇
  2018年   53篇
  2017年   40篇
  2016年   69篇
  2015年   79篇
  2014年   112篇
  2013年   134篇
  2012年   182篇
  2011年   177篇
  2010年   126篇
  2009年   100篇
  2008年   129篇
  2007年   104篇
  2006年   123篇
  2005年   92篇
  2004年   98篇
  2003年   78篇
  2002年   66篇
  2001年   18篇
  2000年   4篇
  1999年   15篇
  1998年   16篇
  1997年   12篇
  1996年   10篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有2017条查询结果,搜索用时 296 毫秒
141.
This is the first report describing two novel chondroprotective activities of aqueous extracts of Withania somnifera root powder. First, these extracts had a statistically significant, short-term chondroprotective effect on damaged human osteoarthritic cartilage matrix in 50% of the patients tested. Second, these extracts caused a significant and reproducible inhibition of the gelatinase activity of collagenase type 2 enzyme in vitro.  相似文献   
142.
BACKGROUND: The objective of this study was to identify factors motivating women to take part in endometriosis research and to determine if these factors differ for women participating in clinical versus basic science studies. METHODS: A consecutive series of 24 women volunteering for participation in endometriosis-related research were asked to indicate, in their own words, why they chose to volunteer. In addition, the women were asked to rate, on a scale of 0 to 10, sixteen potentially motivating factors. The information was gathered in the form of an anonymous self-administered questionnaire. RESULTS: Strong motivating factors (mean score > 8) included potential benefit to other women's health, improvement to one's own condition, and participation in scientific advancement. Weak motivating factors (mean score < 3) included financial compensation, making one's doctor happy, and use of 'natural' products. No difference was detected between clinical and basic science study participants. CONCLUSION: This study is the first study to specifically investigate the factors that motivate women to take part in endometriosis research. Understanding why women choose to take part in such research is important to the integrity of the informed consent process. The factors most strongly motivating women to participate in endometriosis research related to improving personal or public health; the weakest, to financial compensation and pleasing the doctor.  相似文献   
143.
Although nitric oxide (NO) is important for cell signaling and nonspecific immunity in the fruit fly Drosophila melanogaster, little is known about its single NO synthase (dNOS). We expressed the oxygenase domain of dNOS (dNOSoxy), characterized its spectroscopic, kinetic, and catalytic properties, and interpreted them in light of a global kinetic model for NO synthesis. Single turnover reactions with ferrous dNOSoxy showed it could convert Arg to N'omega-hydroxy-l-arginine (NOHA), or NOHA to citrulline and NO, when it was given 6R-tetrahydrobiopterin and O2. The dNOSoxy catalyzed Arg hydroxylation and NOHA oxidation at rates that matched or exceeded the rates catalyzed by the three mammalian NOSoxy enzymes. Consecutive heme-dioxy, ferric heme-NO, and ferric heme species were observed in the NOHA reaction of dNOSoxy, indicating that its catalytic mechanism is the same as in the mammalian NOS. However, NO dissociation from dNOSoxy was 4 to 9 times faster than that from the mammalian NOS enzymes. In contrast, the dNOSoxy ferrous heme-NO complex was relatively unreactive toward O2 and in this way was equivalent to the mammalian neuronal NOS. Our data show that dNOSoxy has unique settings for the kinetic parameters that determine its NO synthesis. Computer simulations reveal that these unique settings should enable dNOS to be a more efficient and active NO synthase than the mammalian NOS enzymes, which may allow it to function more broadly in cell signaling and immune functions in the fruit fly.  相似文献   
144.
The nitric oxide synthase of Drosophila melanogaster (dNOS) participates in essential developmental and behavioral aspects of the fruit fly, but little is known about dNOS catalysis and regulation. To address this, we expressed a construct comprising the dNOS reductase domain and its adjacent calmodulin (CaM) binding site (dNOSr) and characterized the protein regarding its catalytic, kinetic, and regulatory properties. The Ca2+ concentration required for CaM binding to dNOSr was between that of the mammalian endothelial and neuronal NOS enzymes. CaM binding caused the cytochrome c reductase activity of dNOSr to increase 4 times and achieve an activity comparable to that of mammalian neuronal NOS. This change was associated with decreased shielding of the FMN cofactor from solvent and an increase in the rate of NADPH-dependent flavin reduction. Flavin reduction in dNOSr was relatively slow following the initial 2-electron reduction, suggesting a slow inter-flavin electron transfer, and no charge-transfer complex was observed between bound NADP+ and reduced FAD during the process. We conclude that dNOSr catalysis and regulation is most similar to the mammalian neuronal NOS reductase domain, although differences exist in their flavin reduction behaviors. The apparent conservation between the fruit fly and mammalian enzymes is consistent with dNOS operating in various signal cascades that involve NO.  相似文献   
145.
Friedreich ataxia (FRDA) is caused by homozygosity for FXN alleles containing an expanded GAA triplet-repeat (GAA-TR) sequence. Patients have progressive neurodegeneration of the dorsal root ganglia (DRG) and in later stages the cerebellum may be involved. The expanded GAA-TR sequence is unstable in somatic cells in vivo, and although the mechanism of instability remains unknown, we hypothesized that age-dependent and tissue-specific somatic instability may be a determinant of the progressive pathology involving DRG and cerebellum. We show that transgenic mice containing the expanded GAA-TR sequence (190 or 82 triplets) in the context of the human FXN locus show tissue-specific and age-dependent somatic instability that is compatible with this hypothesis. Small pool PCR analysis, which allows quantitative analysis of repeat instability by assaying individual transgenes in vivo, showed age-dependent expansions specifically in the cerebellum and DRG. The (GAA)190 allele showed some instability by 2 months, progressed at about 0.3–0.4 triplets per week, resulting in a significant number of expansions by 12 months. Repeat length was found to determine the age of onset of somatic instability, and the rate and magnitude of mutation. Given the low level of cerebellar instability seen by others in multiple transgenic mice with expanded CAG/CTG repeats, our data indicate that somatic instability of the GAA-TR sequence is likely mediated by unique tissue-specific factors. This mouse model will serve as a useful tool to delineate the mechanism(s) of disease-specific somatic instability in FRDA.  相似文献   
146.
Aldehydes are ubiquitous pollutants generated during the combustion of organic materials and are present in air, water, and food. Several aldehydes are also endogenous products of lipid peroxidation and by-products of drug metabolism. Despite well-documented high reactivity of unsaturated aldehydes, little is known regarding their cardiovascular effects and their role in cardiac pathology. Accordingly, we examined the myocardial effects of the model unsaturated aldehyde acrolein. In closed-chest mice, intravenous acrolein (0.5 mg/kg) induced rapid but reversible left ventricular dilatation and dysfunction. In mouse myocytes, micromolar acrolein acutely depressed myofilament Ca(2+) responsiveness without altering catecholamine sensitivity, similar to the phenotype of stunned myocardium. Immunoblotting revealed increased acrolein-protein adducts and protein-carbonyls in both acrolein-exposed myocardium (1.8-fold increase, P < 0.002) and myocytes (6.4-fold increase, P < 0.02). Both the contractile dysfunction and adduct formation were markedly attenuated by pretreatment with the thiol donor N-acetylcysteine (5 mM). Two-dimensional gel electrophoresis and mass-assisted laser desorption/ionization time-of-flight mass spectrometry analysis revealed two groups of adducted proteins, sarcomeric/cytoskeletal proteins (cardiac alpha-actin, desmin, myosin light polypeptide 3) and energy metabolism proteins (mitochondrial creatine kinase-2, ATP synthase), indicating site-specific protein modification that was confirmed by immunohistochemical colocalization. We conclude that direct exposure to acrolein induces selective myofilament impairment, which may be, in part, related to the modification of proteins involved in myocardial contraction and energy metabolism. Myocardial dysfunction induced by acrolein and related aldehydes may be symptomatic of toxicological states associated with ambient or occupational exposures or drug toxicity. Moreover, aldehydes such as acrolein may mediate cardiac dysfunction in pathologies characterized by high-oxidative stress.  相似文献   
147.
We report the synthesis, in vitro antiprotozoal (against Plasmodium and Leishmania), antimicrobial, cytotoxicity (Vero and MetHb-producing properties), and in vivo antimalarial activities of two series of 8-quinolinamines. N1-{4-[2-(tert-Butyl)-6-methoxy-8-quinolylamino]pentyl}-(2S/2R)-2-aminosubstitutedamides (21-33) and N1-[4-(4-ethyl-6-methoxy-5-pentyloxy-8-quinolylamino)pentyl]-(2S/2R)-2-aminosubstitutedamides (51-63) were synthesized in six steps from 6-methoxy-8-nitroquinoline and 4-methoxy-2-nitro-5-pentyloxyaniline, respectively. Several analogs displayed promising antimalarial activity in vitro against Plasmodium falciparum D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) clones with high selectivity indices versus mammalian cells. The most promising analogs (21-24) also displayed potent antimalarial activity in vivo in a Plasmodium berghei-infected mouse model. Most interestingly, many analogs exhibited promising in vitro antileishmanial activity against Leishmania donovani promastigotes, and antimicrobial activities against a panel of pathogenic bacteria and fungi. Several analogs, notably 21-24, 26-32, and 60, showed less MetHb formation compared to primaquine indicating the potential of these compounds in 8-quinolinamine-based antimalarial drug development.  相似文献   
148.
A highly concentrated immobilized enzyme layer was formed on a small working electrode, and the behavior of the electrode as an amperometric sensor was examined. To this end, a super-hydrophobic layer was formed in an area other than the sensitive area by using polytetrafluoroethylene (PTFE) beads. A small droplet of an enzyme solution containing glucose oxidase (GOD) and bovine serum albumin (BSA) was placed on the sensitive area, concentrated by evaporation, and crosslinked with glutaraldehyde. With the same enzyme activity per unit area, the current density increased with smaller working electrodes. Also, the current density increased with higher enzyme loadings up to a limiting value. In addition, the linear range of the calibration plot was expanded to higher glucose concentrations. The enzyme electrode fabricated by the novel method was incorporated in a micro-flow channel. Compared with large enzyme electrodes with the same enzyme activity per unit area, smaller electrodes showed a significant increase in the current density and a decrease in the flow dependence. The conversion efficiency could be improved by narrowing the flow channel and increasing the number of electrodes, which was comparable with a large electrode placed in a shallow flow channel.  相似文献   
149.
The structure, physiology, and fate of living cells are all highly sensitive to mechanical forces in the cellular microenvironment, including stresses and strains that originate from encounters with the extracellular matrix (ECM), blood and other flowing materials, and neighbouring cells. This relationship between context and physiology bears tremendous implications for the design of cellular micro-or nanotechnologies, since any attempt to control cell behavior in a device must provide the appropriate physical microenvironment for the desired cell behavior. Cells sense, process, and respond to biophysical cues in their environment through a set of integrated, multi-scale structural complexes that span length scales from single molecules to tens of microns, including small clusters of force-sensing molecules at the cell surface, micron-sized cell-ECM focal adhesion complexes, and the cytoskeleton that permeates and defines the entire cell. This review focuses on several key technologies that have recently been developed or adapted for the study of the dynamics of structural micro-and nanosystems in living cells and how these systems contribute to spatially-and temporally-controlled changes in cellular structure and mechanics. We begin by discussing subcellular laser ablation, which permits the precise incision of nanoscale structural elements in living cells in order to discern their mechanical properties and contributions to cell structure. We then discuss fluorescence recovery after photobleaching and fluorescent speckle microscopy, two live-cell fluorescence imaging methods that enable quantitative measurement of the binding and transport properties of specific proteins in the cell. Finally, we discuss methods to manipulate cellular structural networks by engineering the extracellular environment, including microfabrication of ECM distributions of defined geometry and microdevices designed to measure cellular traction forces at micron-scale resolution. Together, these methods form a powerful arsenal that is already adding significantly to our understanding of the nanoscale architecture and mechanics of living cells and may contribute to the rational design of new cellular micro-and nanotechnologies.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号