首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   21篇
  2023年   1篇
  2022年   6篇
  2021年   10篇
  2020年   11篇
  2019年   6篇
  2018年   16篇
  2017年   8篇
  2016年   14篇
  2015年   20篇
  2014年   19篇
  2013年   24篇
  2012年   41篇
  2011年   51篇
  2010年   34篇
  2009年   23篇
  2008年   26篇
  2007年   32篇
  2006年   25篇
  2005年   24篇
  2004年   20篇
  2003年   24篇
  2002年   14篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1989年   1篇
排序方式: 共有456条查询结果,搜索用时 15 毫秒
101.
102.
103.
Calreticulin (CRT) is an endoplasmic reticulum-resident calcium-binding molecular chaperone that is highly conserved in multi-cellular eukaryotes. Higher plants contain two distinct groups of CRTs: CRT1/CRT2 and CRT3 isoforms. Previous studies have shown that bacterial elongation factor Tu receptor (EFR), a pattern-recognition receptor that is responsible for pathogen-associated molecular pattern-triggered immunity, is a substrate for Arabidopsis CRT3, suggesting a role for CRT3 in regulating plant defense against pathogens. Here we report that Arabidopsis CRT2 is another regulator of plant innate immunity. Despite significantly increased salicylic acid levels and constitutive expression of the systemic acquired resistance-associated marker genes PR1, PR2 and PR5, transgenic plants over-expressing CRT2 displayed reduced resistance to virulent Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A (45)Ca(2+) overlay assay and a domain-swapping experiment further demonstrated that the negatively charged C-terminal tail of CRT2 is responsible for its high calcium-binding capacity and function in regulating the endogenous salicylic acid level. In addition, over-expression of the His173 mutant of CRT2 greatly enhanced plant defense against PstDC3000, supporting the existence of a self-inhibition mechanism that can counteract the effects of salicylic acid-dependent immune responses. These results suggest that CRT2 functions through its N-terminal domain(s) as a self-modulator that can possibly prevent the salicylic acid-mediated runaway defense responses triggered by its C-terminal calcium-buffering activity in response to pathogen invasion.  相似文献   
104.
Duplex sonography was used to assess functional features of arteriovenous fistula (AVF) for hemodialysis (HD). Internal diameter (ID), resistance index (RI) and blood flow (BF) velocity in feeding artery and in vein ofAVF, and venous BF volume were analyzed with purpose to determine the normal values. Presumed normal BF velocities are those of clinically well functioning shunts, allowing BF through HD lines of minimally 250 ml/min. Study included 66 nondiabetic HDpatients (30 women, 36 men), mean age 52-13 years, treated by HD for median 61 (4-252) months. Measurements in 47patients with clinically well functioning AVF were as followed: mean arterial ID 5.2 +/- 1.4 mm, median arterial RI 0.3 (0.3-0.9), median arterial BF velocity 1.5 (0.6-3.6) m/s, mean venous ID 7.6 +/- 2.2 mm, median venous RI 0.3 (0.3-0.9), mean venous BF velocity 1.6 +/- 0.7 m/s, and median venous BF volume 530 (120-1890) ml/min. Patients with poor functioning AVF had significantly less arterial ID, higher arterial RI, less venous ID, less venous BF velocity and volume. Duplex sonography findings obtained for clinically estimated well functioning shunt should be considered as normal Doppler values. Blood vessels' morphologic features depend upon age, and older patients have more pronounced changes.  相似文献   
105.
Although it has been suggested that vasopressin (VP) acts within the central nervous system to modulate autonomic cardiovascular controls, the mechanisms involved are not understood. Using nonpeptide, selective V(1a), V(1b), and V(2) antagonists, in conscious rats, we assessed the roles of central VP receptors, under basal conditions, after the central application of exogenous VP, and after immobilization, on cardiovascular short-term variability. Equidistant sampling of blood pressure (BP) and heart rate (HR) at 20 Hz allowed direct spectral analysis in very-low frequency (VLF-BP), low-frequency (LF-BP), and high-frequency (HF-BP) blood pressure domains. The effect of VP antagonists and of exogenous VP on body temperature (T(b)) was also investigated. Under basal conditions, V(1a) antagonist increased HF-BP and T(b), and this was prevented by metamizol. V(1b) antagonist enhanced HF-BP without affecting T(b), and V(2) antagonist increased VLF-BP variability which could be prevented by quinapril. Immobilization increased BP, LF-BP, HF-BP, and HF-HR variability. V(1a) antagonist prevented BP and HR variability changes induced by immobilization and potentiated tachycardia. V(1b) antagonist prevented BP but not HR variability changes, whereas V(2) antagonist had no effect. Exogenous VP increased systolic arterial pressure (SAP) and HF-SAP variability, and this was prevented by V(1a) and V(1b) but not V(2) antagonist pretreatment. Our results suggest that, under basal conditions, VP, by stimulation of V(1a), V(1b), and cognate V(2) receptors, buffers BP variability, mostly due to thermoregulation. Immobilization and exogenous VP, by stimulation of V(1a) or V(1b), but not V(2) receptors, increases BP variability, revealing cardiorespiratory adjustment to stress and respiratory stimulation, respectively.  相似文献   
106.
Priel A  Selak S  Lerma J  Stern-Bach Y 《Neuron》2006,52(6):1037-1046
A prominent feature of ionotropic glutamate receptors from the AMPA and kainate subtypes is their profound desensitization in response to glutamate-a process thought to protect the neuron from overexcitation. In AMPA receptors, it is well established that desensitization results from rearrangements of the interface formed between agonist-binding domains of adjacent subunits; however, it is unclear how this mechanism applies to kainate receptors. Here we show that stabilization of the binding domain dimer by the generation of intermolecular disulfide bonds apparently blocked desensitization of the kainate receptor GluR6. This result establishes a common desensitization mechanism in both AMPA and kainate receptors. Surprisingly, however, surface expression of these nondesensitizing mutants was drastically reduced and did not depend on channel activity. Therefore, in addition to its role at the synapse, we now propose an intracellular role for desensitization in controlling maturation and trafficking of glutamate receptors.  相似文献   
107.
The mechanisms controlling progression of conjugative DNA processing from a preinitiation stage of specific plasmid strand cleavage at the transfer origin to a stage competent for unwinding the DNA strand destined for transfer remain obscure. Linear heteroduplex substrates containing double-stranded DNA binding sites for plasmid R1 relaxosome proteins and various regions of open duplex for TraI helicase loading were constructed to model putative intermediate structures in the initiation pathway. The activity of TraI was compared in steady-state multiple turnover experiments that measured the net production of unwound DNA as well as transesterase-catalyzed cleavage at nic. Helicase efficiency was enhanced by the relaxosome components TraM and integration host factor. The magnitude of stimulation depended on the proximity of the specific protein binding sites to the position of open DNA. The cytoplasmic domain of the R1 coupling protein, TraDΔN130, stimulated helicase efficiency on all substrates in a manner consistent with cooperative interaction and sequence-independent DNA binding. Variation in the position of duplex opening also revealed an unsuspected autoinhibition of the unwinding reaction catalyzed by full-length TraI. The activity reduction was sequence dependent and was not observed with a truncated helicase, TraIΔN308, lacking the site-specific DNA binding transesterase domain. Given that transesterase and helicase domains are physically tethered in the wild-type protein, this observation suggests that an intramolecular switch controls helicase activation. The data support a model where protein-protein and DNA ligand interactions at the coupling protein interface coordinate the transition initiating production and uptake of the nucleoprotein secretion substrate.Controlled duplex DNA unwinding is a crucial prerequisite for the expression and maintenance of genomes. Genome-manipulating and -regulating proteins are central to that biological function in recognizing appropriate DNA targets at initiation sequences and unwinding the complementary strands to provide single-stranded DNA (ssDNA) templates for nucleic acid synthesis and other processing reactions. The protein machineries involved include nucleic acid helicases. DNA helicases are powerful enzymes that convert the energy of nucleoside triphosphate hydrolysis to directional DNA strand translocation and separation of the double helix into its constituent single strands (for reviews, see references 13, 14, 16, 38, 55, and 64). By necessity, these enzymes interact with DNA strands via mechanisms independent of sequence recognition. At replication initiation helicases gain controlled access to the double-stranded genome at positions determined by the DNA binding properties of initiator proteins that comprise an origin recognition complex (1, 9, 17, 31, 45, 66). The mechanisms supporting localized unwinding within the complex include initiator-induced DNA looping, wrapping, and bending and feature regions of low thermodynamic stability. The exposed ssDNA mediates helicase binding followed by directional translocation along that strand until the enzyme engages the duplex for unwinding.In the MOBF family of conjugation systems, the plasmid DNA strand destined for transfer (T strand) is unwound from its complement by a dedicated conjugative helicase, TraI of F-like plasmids or TrwC of the IncW paradigm. These enzymes are remarkable in that the same polypeptides additionally harbor in a distinct domain a DNA transesterase activity. That function is required to recognize and cleave the precise phosphodiester bond, nic, in the T strand where unwinding of the secretion substrate begins. In current models the conjugative helicases are thus targeted to the transfer origin (oriT) of their cognate plasmid by the high-affinity DNA sequence interactions of their N-terminal DNA transesterase domains. In the bacterial cell, recruitment and activation of the conjugative helicase occur not on naked DNA but within an initiator complex called the relaxosome (67). For the F-like plasmid R1, sequence-specific DNA binding properties of the plasmid proteins TraI, TraY, TraM, and the host integration factor (IHF) direct assembly of the relaxosome at oriT (10, 12, 29, 33, 51, 52). Integration of protein TraM confers recognition features to the relaxosome, which permit its selective docking to TraD, the coupling protein associated with the conjugative type IV secretion system (T4CP) (2, 15, 49). In current models, the T4CP forms a hexameric translocation pore at the cytoplasmic membrane that not only governs substrate entry to the envelope spanning type IV secretion machinery but also provides energy for macromolecular transport via ATP hydrolysis (36, 50). These models propose that T4CPs provide not only a physical bridge between the plasmid and the type IV transporter but also a unique control function in distinguishing one plasmid (relaxosome) from another (7, 8). Before the current study (see accompanying report [41]), evidence indicating that regulation of the initiation of conjugative DNA processing also takes place at this interface had not been reported.F plasmid TraI protein, originally named Escherichia coli DNA helicase I, was initially characterized in the Hoffman-Berling laboratory (19). The purified enzyme exhibits properties in vitro consistent with its function in conjugative DNA strand transfer including a very high 1,100-bp/s rate of duplex unwinding, high processivity, and a 5′-to-3′ directional bias (relative to the strand to which it is bound) (34, 54). Together these features should readily support the observed rate of conjugative DNA translocation as well as concomitant replacement synthesis of the mobilized T strand from the 3′ OH product of nic cleavage.Comparatively little is known about the mechanisms of initiating TraI helicase activity. The enzyme requires ssDNA 5′ to the duplex junction (32), and a minimum length of 30 nucleotides (nt) is necessary to promote efficient duplex unwinding on substrates lacking oriT (11, 54). To our knowledge, oriT is the only sequence where the helicase activity is naturally initiated, however. Moreover, the unique fusion of a helicase to the site- and strand-specific DNA transesterase domains within MOBF enzymes is expected to pose intriguing regulatory challenges during initiation. The combination within a single polypeptide of a site-specific DNA binding capacity with a helical motor activity would seem counterproductive. The extraordinary efficiency of these proteins in intercellular DNA strand transfer belies this prediction and instead hints strongly at a coordinated progression of the initiation pathway. Since relaxosome assembly is thus far insufficient to initiate helicase activity on supercoiled oriT substrates in vitro, we have developed a series of heteroduplex DNA substrates which support the unwinding reaction and model possible intermediate structures of R1 plasmid strand transfer initiation (10). In this system linear double-stranded DNA (dsDNA) substrates with a central region of sequence heterogeneity trap defined lengths of R1 oriT sequence in unwound conformation. Unexpectedly, efficient helicase activity initiated from a melted oriT duplex required ssDNA twice as long (60 nt) as that previously observed on substrates lacking this sequence (11).In the current report, we describe an application of these models where variation in the position of duplex opening in the vicinity of nic, as well as the additional presence of auxiliary relaxosome proteins, has revealed novel insights into control of a conjugative helicase involving both DNA and protein interactions. Moreover, we observe a sequence-independent stimulation of the unwinding reaction in the presence of T4CP TraD. These results support a model where docking of the preinitiation relaxosome assembly to the T4CP alters the composition and architecture of the complex in a manner essential to the subsequent initiation of T-strand unwinding.  相似文献   
108.
Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism. LXR agonists have been shown to limit the cellular cholesterol content by inducing reverse cholesterol transport, increasing bile acid production, and inhibiting intestinal cholesterol absorption. Most of them, however, also increase lipogenesis via sterol regulatory element-binding protein-1c (SREBP1c) and carbohydrate response element-binding protein activation resulting in hypertriglyceridemia and liver steatosis. We report on the antiatherogenic properties of the steroidal liver X receptor agonist N,N-dimethyl-3beta-hydroxy-cholenamide (DMHCA) in apolipoprotein E (apoE)-deficient mice. Long-term administration of DMHCA (11 weeks) significantly reduced lesion formation in male and female apoE-null mice. Notably, DMHCA neither increased hepatic triglyceride (TG) levels in male nor female apoE-deficient mice. ATP binding cassette transporter A1 and G1 and cholesterol 7alpha-hydroxylase mRNA abundances were increased, whereas SREBP1c mRNA expression was unchanged in liver, and even decreased in macrophages and intestine. Short-term treatment revealed even higher changes on mRNA regulation. Our data provide evidence that DMHCA is a strong candidate as therapeutic agent for the treatment or prevention of atherosclerosis, circumventing the negative side effects of other LXR agonists.  相似文献   
109.

Background

Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease targeting the insulin-producing pancreatic β cells. Naturally occurring FOXP3+CD4+CD25high regulatory T cells (Tregs) play an important role in dominant tolerance, suppressing autoreactive CD4+ effector T cell activity. Previously, in both recent-onset T1D patients and β cell antibody-positive at-risk individuals, we observed increased apoptosis and decreased function of polyclonal Tregs in the periphery. Our objective here was to elucidate the genes and signaling pathways triggering apoptosis in Tregs from T1D subjects.

Principal Findings

Gene expression profiles of unstimulated Tregs from recent-onset T1D (n = 12) and healthy control subjects (n = 15) were generated. Statistical analysis was performed using a Bayesian approach that is highly efficient in determining differentially expressed genes with low number of replicate samples in each of the two phenotypic groups. Microarray analysis showed that several cytokine/chemokine receptor genes, HLA genes, GIMAP family genes and cell adhesion genes were downregulated in Tregs from T1D subjects, relative to control subjects. Several downstream target genes of the AKT and p53 pathways were also upregulated in T1D subjects, relative to controls. Further, expression signatures and increased apoptosis in Tregs from T1D subjects partially mirrored the response of healthy Tregs under conditions of IL-2 deprivation. CD4+ effector T-cells from T1D subjects showed a marked reduction in IL-2 secretion. This could indicate that prior to and during the onset of disease, Tregs in T1D may be caught up in a relatively deficient cytokine milieu.

Conclusions

In summary, expression signatures in Tregs from T1D subjects reflect a cellular response that leads to increased sensitivity to apoptosis, partially due to cytokine deprivation. Further characterization of these signaling cascades should enable the detection of genes that can be targeted for restoring Treg function in subjects predisposed to T1D.  相似文献   
110.
The endemic species Echinogammarus cari (Karaman 1931) is the only species of this genus present in the Black Sea drainage basin of Croatia. The species is known only from its type locality, the Bistrac spring. Since little is known about the distribution and ecology of this amphipod species, research was conducted to determine the extent of its distribution in the Dobra River and its tributaries, part of which will be flooded on the completion of a 52.5 m high dam in 2009. Sampling was conducted at 10 study sites in the drainage area of the sinking Gornja Dobra and at 19 study sites in the Gojačka Dobra, including measurement of physicochemical parameters. To examine microdistribution of this species, samples were collected on moss and on stony substrate. The species is confined to first 15 km of the Gojačka Dobra, its tributary streams Bistrica and Ribnjak, while it is absent in the drainage area of the Gornja Dobra. At all sites where it was recorded, it coexists with Gammarus fossarum, and its relative abundance was significantly higher on moss microhabitats, while G. fossarum was more abundant on a stony substrate. The downstream decrease in the relative abundance of E. cari could be related to the longitudinal decrease in conductivity and the increase of water temperature fluctuations. After the completion of the dam, 60% of the presently known distribution area of E. cari will be flooded. Consequently, the species is likely to become endangered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号