首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   16篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1945年   1篇
  1944年   2篇
排序方式: 共有55条查询结果,搜索用时 109 毫秒
51.
The stress-activated protein kinase p38 stabilizes a number of mRNAs encoding inflammatory mediators, such as cyclooxygenase 2 (Cox-2). In HeLa cells the anti-inflammatory glucocorticoid dexamethasone destabilizes Cox-2 mRNA by inhibiting p38 function. Here we demonstrate that this effect is phosphatase dependent. Furthermore, in HeLa cells dexamethasone induced the sustained expression of mitogen-activated protein kinase phosphatase 1 (MKP-1), a potent inhibitor of p38 function. The inhibition of p38 and the induction of MKP-1 by dexamethasone occurred with similar dose dependence and kinetics. No other known p38 phosphatases were induced by dexamethasone, and other cell types which failed to express MKP-1 also failed to inhibit p38 in response to dexamethasone. The proinflammatory cytokine interleukin 1 (IL-1) induced MKP-1 expression in a p38-dependent manner and acted synergistically with dexamethasone to induce MKP-1 expression. In HeLa cells treated with IL-1 or IL-1 and dexamethasone, the dynamics of p38 activation mirrored the expression of MKP-1. These observations suggest that MKP-1 participates in a negative-feedback loop which regulates p38 function and that dexamethasone may inhibit proinflammatory gene expression in part by inducing MKP-1 expression.  相似文献   
52.
We show that proteomic analysis can be applied to study cartilage pathophysiology. Proteins secreted by articular cartilage were analyzed by two-dimensional SDS-PAGE and mass spectrometry. Cartilage explants were cultured in medium containing [35S]methionine/cysteine to radiolabel newly synthesized proteins. To resolve the cartilage proteins by two-dimensional electrophoresis, it was necessary to remove the proteoglycan aggrecan by precipitation with cetylpyridinium chloride. 50-100 radiolabeled protein spots were detected on two-dimensional gels of human cartilage cultures. Of 170 silver-stained proteins identified, 19 were radiolabeled, representing newly synthesized gene products. Most of these were known cartilage constituents. Several nonradiolabeled cartilage proteins were also detected. The secreted protein pattern of explants from 12 osteoarthritic joints (knee, hip, and shoulder) and 14 nonosteoarthritic adult joints were compared. The synthesis of type II collagen was strongly up-regulated in osteoarthritic cartilage. Normal adult cartilage synthesized little or no type II collagen in contrast to infant and juvenile cartilage. Potential regulatory molecules novel to cartilage were identified; pro-inhibin betaA and processed inhibin betaA (which dimerizes to activin A) were produced by all the osteoarthritic samples and half of the normals. Connective tissue growth factor and cytokine-like protein C17 (previously only identified as an mRNA) were also found. Activin induced the tissue inhibitor for metalloproteinases-1 in human chondrocytes. Its expression was induced in isolated chondrocytes by growth factors or interleukin-1. We conclude that type II collagen synthesis in articular cartilage is down-regulated at skeletal maturity and reactivated in osteoarthritis in attempted repair and that activin A may be an anabolic factor in cartilage.  相似文献   
53.
54.
55.
Explants of porcine synovium produce a factor which causes degradation of the matrix of live cartilage in organ culture. Cartilage degradation was measured as release of glycosaminoglycan from explants of bovine nasal septum. Fractionation of synovial culture medium showed the factor to be a protein of 20,000 mol.wt. and iso-electric point pH = 4.6. The factor has been named catabolin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号