首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   50篇
  2022年   6篇
  2021年   29篇
  2020年   14篇
  2019年   18篇
  2018年   11篇
  2017年   9篇
  2016年   21篇
  2015年   34篇
  2014年   53篇
  2013年   64篇
  2012年   70篇
  2011年   66篇
  2010年   39篇
  2009年   37篇
  2008年   64篇
  2007年   50篇
  2006年   48篇
  2005年   41篇
  2004年   37篇
  2003年   36篇
  2002年   25篇
  2001年   22篇
  2000年   22篇
  1999年   8篇
  1998年   2篇
  1997年   10篇
  1996年   2篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   15篇
  1991年   12篇
  1990年   9篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1981年   3篇
  1979年   4篇
  1978年   7篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
  1968年   2篇
排序方式: 共有981条查询结果,搜索用时 21 毫秒
71.
AIMS: The enzymatic hydrolysis of xylan has potential economic and environment-friendly applications. Therefore, attention is focused here on the discovery of new extremophilic xylanase in order to meet the requirements of industry. METHODS AND RESULTS: An extracellular xylanase was purified from the culture filtrate of P. citrinum grown on wheat bran bed in solid substrate fermentation. Single step purification was achieved using hydrophobic interaction chromatography. The purified enzyme showed a single band on SDS-PAGE with an apparent molecular weight of c. 25 kDa and pI of 3.6. Stimulation of the activity by beta mercaptoethanol, dithiotheritol (DTT) and cysteine was observed. Moderately thermostable xylanase showed optimum activity at 50 degrees C at pH 8.5. CONCLUSION: Xylanase purified from P. citrinum was alkaliphilic and moderately thermostable in nature. SIGNIFICANCE AND IMPACT OF THE STUDY: The present work reports for the first time the purification and characterization of a novel endoglucanase free alkaliphilic xylanase from the alkali tolerant fungus Penicillium citrinum. The alkaliphilicity and moderate thermostability of this xylanase may have potential implications in paper and pulp industries.  相似文献   
72.
The nitric oxide synthase of Drosophila melanogaster (dNOS) participates in essential developmental and behavioral aspects of the fruit fly, but little is known about dNOS catalysis and regulation. To address this, we expressed a construct comprising the dNOS reductase domain and its adjacent calmodulin (CaM) binding site (dNOSr) and characterized the protein regarding its catalytic, kinetic, and regulatory properties. The Ca2+ concentration required for CaM binding to dNOSr was between that of the mammalian endothelial and neuronal NOS enzymes. CaM binding caused the cytochrome c reductase activity of dNOSr to increase 4 times and achieve an activity comparable to that of mammalian neuronal NOS. This change was associated with decreased shielding of the FMN cofactor from solvent and an increase in the rate of NADPH-dependent flavin reduction. Flavin reduction in dNOSr was relatively slow following the initial 2-electron reduction, suggesting a slow inter-flavin electron transfer, and no charge-transfer complex was observed between bound NADP+ and reduced FAD during the process. We conclude that dNOSr catalysis and regulation is most similar to the mammalian neuronal NOS reductase domain, although differences exist in their flavin reduction behaviors. The apparent conservation between the fruit fly and mammalian enzymes is consistent with dNOS operating in various signal cascades that involve NO.  相似文献   
73.
Novel biophysical approaches combined with modeling and new biochemical data have helped to recharge the lipid raft field and have contributed to the generation of a refined model of plasma membrane organization. In this review, we summarize new information in the context of previous literature to provide new insights into the spatial organization and dynamics of lipids and proteins in the plasma membrane of live cells. Recent findings of large-scale separation of liquid-ordered and liquid-disordered phases in plasma membrane vesicles demonstrate this capacity within the complex milieu of plasma membrane proteins and lipids. Roles for membrane heterogeneity and reorganization in immune cell activation are discussed in light of this new information.  相似文献   
74.
Positional stability of single double-strand breaks in mammalian cells   总被引:7,自引:0,他引:7  
Formation of cancerous translocations requires the illegitimate joining of chromosomes containing double-strand breaks (DSBs). It is unknown how broken chromosome ends find their translocation partners within the cell nucleus. Here, we have visualized and quantitatively analysed the dynamics of single DSBs in living mammalian cells. We demonstrate that broken ends are positionally stable and unable to roam the cell nucleus. Immobilization of broken chromosome ends requires the DNA-end binding protein Ku80, but is independent of DNA repair factors, H2AX, the MRN complex and the cohesion complex. DSBs preferentially undergo translocations with neighbouring chromosomes and loss of local positional constraint correlates with elevated genomic instability. These results support a contact-first model in which chromosome translocations predominantly form among spatially proximal DSBs.  相似文献   
75.
76.
The nuclear pore complex (NPC) mediates the transport of macromolecules between the nucleus and cytoplasm. Recent evidence indicates that structural nucleoporins, the building blocks of the NPC, have a variety of unanticipated cellular functions. Here, we report an unexpected tissue-specific requirement for the structural nucleoporin Seh1 during Drosophila oogenesis. Seh1 is a component of the Nup107-160 complex, the major structural subcomplex of the NPC. We demonstrate that Seh1 associates with the product of the missing oocyte (mio) gene. In Drosophila, mio regulates nuclear architecture and meiotic progression in early ovarian cysts. Like mio, seh1 has a crucial germline function during oogenesis. In both mio and seh1 mutant ovaries, a fraction of oocytes fail to maintain the meiotic cycle and develop as pseudo-nurse cells. Moreover, the accumulation of Mio protein is greatly diminished in the seh1 mutant background. Surprisingly, our characterization of a seh1 null allele indicates that, although required in the female germline, seh1 is dispensable for the development of somatic tissues. Our work represents the first examination of seh1 function within the context of a multicellular organism. In summary, our studies demonstrate that Mio is a novel interacting partner of the conserved nucleoporin Seh1 and add to the growing body of evidence that structural nucleoporins can have novel tissue-specific roles.  相似文献   
77.
Photoactivated localization microscopy (PALM) is a powerful approach for investigating protein organization, yet tools for quantitative, spatial analysis of PALM datasets are largely missing. Combining pair-correlation analysis with PALM (PC-PALM), we provide a method to analyze complex patterns of protein organization across the plasma membrane without determination of absolute protein numbers. The approach uses an algorithm to distinguish a single protein with multiple appearances from clusters of proteins. This enables quantification of different parameters of spatial organization, including the presence of protein clusters, their size, density and abundance in the plasma membrane. Using this method, we demonstrate distinct nanoscale organization of plasma-membrane proteins with different membrane anchoring and lipid partitioning characteristics in COS-7 cells, and show dramatic changes in glycosylphosphatidylinositol (GPI)-anchored protein arrangement under varying perturbations. PC-PALM is thus an effective tool with broad applicability for analysis of protein heterogeneity and function, adaptable to other single-molecule strategies.  相似文献   
78.
79.
Banerjee N  Sengupta S  Roy A  Ghosh P  Das K  Das S 《PloS one》2011,6(4):e18593

Background

Allium sativum leaf agglutinin (ASAL) is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL.

Methodology/Principal Findings

By introduction of 5 site-specific mutations (-DNSNN-), a β turn was incorporated between the 11th and 12th β strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL). mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL.

Conclusions/Significance

Conversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of mASAL into agronomically-important crops could be an alternative method to protect them from dramatic yield losses from pathogenic fungi in an effective manner.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号