首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  2023年   1篇
  2021年   4篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2012年   6篇
  2011年   6篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1983年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
11.
One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a “systems-wide” functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.  相似文献   
12.
Introduction: The threat bacterial pathogens pose to human health is increasing with the number and distribution of antibiotic-resistant bacteria, while the rate of discovery of new antimicrobials dwindles. Proteomics is playing key roles in understanding the molecular mechanisms of bacterial pathogenesis, and in identifying disease outcome determinants. The physical associations identified by proteomics can provide the means to develop pathogen-specific treatment methods that reduce the spread of antibiotic resistance and alleviate the negative effects of broad-spectrum antibiotics on beneficial bacteria.

Areas covered: This review discusses recent trends in proteomics and introduces new and developing approaches that can be applied to the study of protein-protein interactions (PPIs) underlying bacterial pathogenesis. The approaches examined encompass options for mapping proteomes as well as stable and transient interactions in vivo and in vitro. We also explored the coverage of bacterial and human-bacterial PPIs, knowledge gaps in this area, and how they can be filled.

Expert commentary: Identifying potential antimicrobial candidates is confounded by the complex molecular biology of bacterial pathogenesis and the lack of knowledge about PPIs underlying this process. Proteomics approaches can offer new perspectives for mechanistic insights and identify essential targets for guiding the discovery of next generation antimicrobials.  相似文献   

13.
Arbuscular mycorrhizal fungi are widespread plant symbionts occurring in most agricultural crops, where they can play key roles in the growth and health of their plant hosts. Plant benefits can depend on the identity of the associated arbuscular mycorrhizal fungi (AMF), but little is known about the identity of the fungal partners in most agricultural systems. In this study, we describe the AMF assemblages associated with four cultivars of strawberry in an outdoor experiment using two field soils with different origin and management history. Assemblages were characterised by clone library sequencing of 18S rRNA gene fragments. Soil dramatically influenced the degree of mycorrhizal colonisation and AMF assemblage structure in the roots. No differences were observed between cultivars. Fungi belonging to the genus Acaulospora dominated the AMF assemblages in one soil, but they were not detected in the other. These results suggest that physicochemical soil characteristics and management can play a role in determining the identity and structure of microbial communities associated with particular hosts in agricultural systems.  相似文献   
14.
Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.  相似文献   
15.
Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap. Roots of plants growing in two contrasting field soils had high relative abundance of Leptodontidium sp. C2 BESC 319 g whereas rhizosphere soil was characterised by high relative abundance of Trichosporon dulcitum or Cryptococcus terreus, depending upon the soil type. Differences between different cultivars were not as clear. Inoculation with the pathogen V. dahliae had a significant influence on community structure, generally decreasing the number of rhizosphere soil- and root-inhabiting fungi. Leptodontidium sp. C2 BESC 319 g was the dominant fungus responding positively to inoculation with V. dahliae. The results suggest that 1) plant roots select microorganisms from the wider rhizosphere pool, 2) that both rhizosphere soil and root inhabiting fungal communities are influenced by V. dahliae and 3) that soil type has a stronger influence on both of these communities than cultivar.  相似文献   
16.
Joshi S  Rana S  Wangikar P  Durani S 《Biopolymers》2006,83(2):122-134
Artificial proteins potentially barrier-free in the folding kinetics are approached computationally under the guidance of protein-folding theories. The smallest and fastest folding globular protein triple-helix-bundle (THB) is so modified as to minimize or eliminate its presumed barriers in folding speed. As the barriers may reside in the ordering of either secondary or tertiary structure, the elements of both secondary and tertiary structure in the protein are targeted for prenucleation with suitable stereochemically constrained amino acid residues. The required elements of topology and sequence for the THB are optimized independently; first the topology is optimized with simulated annealing in polypeptides of highly simplified alphabet; next, the sequence in side chains is optimized using the standard inverse design methods. The resultant three best-adapted THBs, variable in topology and distinctive in sequences, are assessed by comparing them with a few benchmark proteins. The results of mainly molecular dynamics (MD) comparisons, undertaken in explicit water at different temperatures, show that the designed sequences are favorably placed against the chosen benchmarks as THB proteins potentially thermostable in the native folds. Folding simulation experiments with MD establish that the designed sequences are rapid in the folding of individual helices, but not in the evolution of tertiary structure; energetic cum topological frustrations remain but could be the artifacts of the starting conformations that were chosen in the THBs in the folding simulations. Overall, a practical high-throughput approach for de novo protein design has been developed that may have fruitful application for any type of tertiary structure.  相似文献   
17.
Five new structural analogues of substituted-1H-quinolinones (19, 20, 23, 24, and 26) have been synthesized and evaluated for Staphylococcus aureus methionyl-tRNA synthetase enzyme inhibitory activity. These compounds were also tested against pathogens of six S. aureus, two Enterococcus faecalis, and one Enterococcus faecium. Among all the synthesized quinolinones, compound 20 displayed significant inhibitory activities in the strains of E. faecalis and E. faecium.  相似文献   
18.
The problem of patient non-compliance in the management of tuberculosis (TB) can be overcome by reducing the dosing frequency of antitubercular drugs (ATD) employing drug carriers. This study reports on the intravenous (iv) administration of lung specific stealth liposomes encapsulating ATD (rifampicin and isoniazid in combination) to guinea pigs and the detailed pharmacokinetic/chemotherapeutic studies. Following a single iv administration of liposomal drugs, the latter were found to exhibit sustained therapeutic levels in plasma for 96-168 hr with half-lives of 24-70 hr, mean residence time (MRT) of 35-81 hr and organ drug levels up to day 7. The relative bioavailability (as compared to oral free drugs) was increased by 5.4-8.9 folds, whereas the absolute bioavailability (as compared to iv free drugs) was increased by 2.9-4.2 folds. Weekly therapy with liposomal ATD for 6 weeks produced equivalent clearance of Mycobacterium tuberculosis from organs as did daily therapy with oral free drugs. Hence, intravenous liposomal ATD offer the therapeutic advantage of reducing the dosing frequency and improving the patient compliance in the management of TB.  相似文献   
19.
Oilseed rape (Brassica napus) is one of the major oilseed crops in the world but is vulnerable to attack by many pathogens and insect pests. In addition to the host plant genotype, micro-organisms present in the rhizosphere and within plant tissues affect the susceptibility to plant pathogens. While rapid progress has been achieved concerning the concept of plant resistance genes, information on the role of the microbial community in plant protection is less apparent. We have studied the endophytic bacterial populations present in different tissues of oilseed rape and also analysed several cultivars (Express, Libraska, Maluka and Westar), which differ in their susceptibility to the wilt pathogen Verticillium longisporum. The population diversity was studied using agar plating assay, fatty acid methyl ester analysis and functional characterisation of isolated strains. Our work shows that already in the seeds there exists diversity in populations as well as in the total microbial load between two of the four tested cultivars. About 50% of the strains isolated from cultivars Express and Libraska showed moderate to strong direct inhibition of V. longisporum. The diversity of the endophytic flora isolated from oilseed rape and its implications in crop protection are discussed.  相似文献   
20.
The antimycobacterial activity of two clinically approved antifungal azole drugs, clotrimazole and econazole, was evaluated against Mycobacterium tuberculosis H37Rv under in vitro and ex vivo conditions. The minimum inhibitory concentration (MIC90) was 0.120 μg ml−1, whereas the minimum bactericidal concentration and effective concentration was 0.125 μg ml−1 for both the drugs demonstrating their potent antimycobacterial activity. Further, the azole drugs exhibited a synergistic activity with either rifampicin or isoniazid as evaluated on the basis of reduction of colony forming units. The results suggest that azole compounds bear the potential to enhance the efficacy of currently prescribed antitubercular drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号