首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1192篇
  免费   45篇
  2022年   3篇
  2021年   16篇
  2020年   8篇
  2019年   9篇
  2018年   13篇
  2017年   18篇
  2016年   27篇
  2015年   36篇
  2014年   46篇
  2013年   80篇
  2012年   62篇
  2011年   52篇
  2010年   42篇
  2009年   46篇
  2008年   84篇
  2007年   76篇
  2006年   84篇
  2005年   76篇
  2004年   85篇
  2003年   51篇
  2002年   89篇
  2001年   13篇
  2000年   10篇
  1999年   12篇
  1998年   13篇
  1997年   17篇
  1996年   8篇
  1995年   18篇
  1994年   12篇
  1993年   10篇
  1992年   10篇
  1991年   13篇
  1990年   5篇
  1989年   6篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   2篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   9篇
  1980年   6篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
排序方式: 共有1237条查询结果,搜索用时 843 毫秒
101.
Summary Heat shock proteins (HSPs) have been recognized as molecules that maintain cellular homeostasis during changes in the environment. Here we report that HSP90 functions not only in stress responses but also in certain aspects of cellular differentiation. We found that HSP90 slowed remarkably high expression in undifferentiated human embryonal carcinoma (EC) cells, which were subsequently dramatically down-regulated during in vitro cellular differentiation, following retinoic acid (RA) treatment, at the protein level. Surprisingly, heat shock treatment also triggered the down-regulation of HSP90 within 48 h at the protein level. Furthermore, the heat treatment induced cellular differentiation into neural cells. This down-regulation of HSP90 by heat treatment was shifted to an up-regulation attern after cellular differentiation in response to RA treatment. In order to clarify the functions of HSP90 in cellular differentiation, we conducted various experiments, including overexpression of HSP90 via gene transfer. We showed that the RA-induced differentiation of EC cells into a neural cell lineage was inhibited by overexpression of the HSP90α or-β isoform via the gene transfer method. On the other hand, the overexpression of HSP90β alone impaired cellular differentiation into trophoectoderm. These results show that down-regulation of HSP90 is a physiological critical event in the differentiation of human EC cells and that specific HSP90 isoforms may be involved in differentiation into specific cell lineages.  相似文献   
102.

Aim

Des-γ-carboxyprothrombin (DCP) has been used as a tumor marker for hepatocellular carcinoma (HCC). Recently the DCP/NX-DCP ratio, calculated by dividing DCP by NX-DCP, has been reported useful in detecting HCC. The purpose of this study is to clarify the significance of DCP and NX-DCP expression in HCC tissues.

Methods

HCC and non-HCC tissue samples were obtained from 157 patients and were immunohistochemically examined for DCP and NX-DCP expression using anti-DCP antibody and anti-NX-DCP antibody. DCP and NX-DCP expression scores were calculated by multiplying staining intensity grade by percentage of stained area. Serum DCP and NX-DCP levels were determined in 89 patients. We evaluated the relationship between tumor expression, serum level, and pathomorphological findings.

Results

Intrahepatic metastasis (im) was significantly more frequent in cases with high DCP expression than in cases with low DCP expression. High NX-DCP expression was associated with significantly lower histological grade, and less frequent im or portal vein invasion (vp) than low NX-DCP expression. Serum DCP was correlated with DCP expression, but serum NX-DCP was not correlated with NX-DCP expression. DCP-positive (≥40 mAU/L), NX-DCP-positive (≥90 mAU/L), and DCP/NX-DCP ratio-positive (≥1.5) cases were associated with significantly larger tumor size and more frequent vp than negative cases. DCP was rarely expressed, but NX-DCP was frequently expressed in non-cancerous liver tissues. Patients with NX-DCP expression-negative tumors showed a lower survival rate than those with NX-DCP expression-positive tumors (p = 0.04), whereas the survival in serum NX-DCP-positive cases was lower than that of serum negative cases (p = 0.02).

Conclusions

DCP and NX-DCP were produced in HCC tissues, but differed in expression level and biological properties. DCP expression, serum DCP or NX-DCP level, and DCP/NX-DCP ratio were closely related to malignant properties of HCC.  相似文献   
103.
Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT), a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6–7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation) was performed 1–2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir) 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92–86% suppression of food intake at 2–24 h post-surgery compared with control group (no surgery). RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON), paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W), lateral periaqueduct gray (PAG), lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS). RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration) and satiety (meal interval) and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition. RKT improves food consumption post-surgically that may involve modulation of pain pathway.  相似文献   
104.
The newly characterized cytokine IL-38 (IL-1F10) belongs to the IL-1 family of cytokines. Previous work has demonstrated that IL-38 inhibited Candida albicans-induced IL-17 production from peripheral blood mononuclear cells. However, it is still unclear whether IL-38 is an inflammatory or an anti-inflammatory cytokine. We generated anti-human IL-38 monoclonal antibodies in order to perform immunohistochemical staining and an enzyme-linked immunosorbent assay. While human recombinant IL-38 protein was not cleaved by recombinant caspase-1, chymase, or PR3 in vitro, overexpression of IL-38 cDNA produced a soluble form of IL-38 protein. Furthermore, immunohistochemical analysis showed that synovial tissues obtained from RA patients strongly expressed IL-38 protein. To investigate the biological role of IL-38, C57BL/6 IL-38 gene-deficient (?/?) mice were used in an autoantibody-induced rheumatoid arthritis (RA) mouse model. As compared with control mice, IL-38 (?/?) mice showed greater disease severity, accompanied by higher IL-1β and IL-6 gene expression in the joints. Therefore, IL-38 acts as an inhibitor of the pathogenesis of autoantibody-induced arthritis in mice and may have a role in the development or progression of RA in humans.  相似文献   
105.
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease exhibited most commonly in joints. We found that the expression of C1qtnf3, which encodes C1q/TNF-related protein 3 (CTRP3), was highly increased in two mouse RA models with different etiology. To elucidate the pathogenic roles of CTRP3 in the development of arthritis, we generated C1qtnf3−/− mice and examined the development of collagen-induced arthritis in these mice. We found that the incidence and severity score was higher in C1qtnf3−/− mice compared with wild-type (WT) mice. Histopathology of the joints was also more severe in C1qtnf3−/− mice. The levels of antibodies against type II collagen and pro-inflammatory cytokine mRNAs in C1qtnf3−/− mice were higher than WT mice. These observations indicate that CTRP3 plays an important role in the development of autoimmune arthritis, suggesting CTRP3 as a possible medicine to treat RA.  相似文献   
106.
107.
We recently reported that the cwa1 mutation disturbed the deposition and assembly of secondary cell wall materials in the cortical fiber of rice internodes. Genetic analysis revealed that cwa1 is allelic to bc1, which encodes glycosylphosphatidylinositol (GPI)-anchored COBRA-like protein with the highest homology to Arabidopsis COBRA-like 4 (COBL4) and maize Brittle Stalk 2 (Bk2). Our results suggested that CWA1/BC1 plays a role in assembling secondary cell wall materials at appropriate sites, enabling synthesis of highly ordered secondary cell wall structure with solid and flexible internodes in rice. The N-terminal amino acid sequence of CWA1/BC1, as well as its orthologs (COBL4, Bk2) and other BC1-like proteins in rice, shows weak similarity to a family II carbohydrate-binding module (CBM2) of several bacterial cellulases. To investigate the importance of the CBM-like sequence of CWA1/BC1 in the assembly of secondary cell wall materials, Trp residues in the CBM-like sequence, which is important for carbohydrate binding, were substituted for Val residues and introduced into the cwa1 mutant. CWA1/BC1 with the mutated sequence did not complement the abnormal secondary cell walls seen in the cwa1 mutant, indicating that the CBM-like sequence is essential for the proper function of CWA1/BC1, including assembly of secondary cell wall materials.Key words: carbohydrate-binding module, COBRA-LIKE, CWA1/BC1, glycosylphosphatidylinositol-anchored protein, secondary cell wall formationThe main function of carbohydrate-binding modules (CBMs) of microbes and plants is to attach the enzyme to a variety of cell surface glycans and thereby increase the local concentration of substrate, leading to more efficient catalysis.14 Almost all CBMs studied to date contain surface-exposed aromatic rings, which have been shown to be the main sites of interaction with polysaccharides. These residues form face-to-face hydrophobic stacking interactions in which a Trp residue or ring of a Tyr residue interacts with the non-polar face of a sugar ring.59 CBMs have been classified into families based on amino acid sequence similarity. Currently, there are 59 defined families of CBMs and these CBMs display substantial variation in ligand specificity (http://www.cazy.org/Carbohydrate-Binding-Modules.html). Among these CBM families, the large family of CBM2 has been further classified into two subgroups, CBM2a and 2b, which have shown to bind cellulose and xylan, respectively.1012 CBM2a characteristically possess three exposed Trp residues,13 whereas CBM2b have two Trp residues,14 which are conserved among the CBM2 members (Fig. 1A).Open in a separate windowFigure 1Sequence alignment of the CBM-like sequence of CWA1/BC1, the BC1L proteins and bacterial CBM2 members. (A) Sequence alignment between bacterial CBM2a, 2b and CWA1/BC1. The three surface-exposed Trp residues of CBM2a members are indicated by asterisks and W. The CBM sequences of CBM2a are: CfiCenA, Cellulomonas fimi endo-1,4-glucanase; CfiCex, C. fimi exo-beta-1,4-glucanase. Those of CBM2b are: CfiXylD1, C. fimi endo-1,4-beta-xylanase D; CfiXylD2, C. fimi endo-1,4-beta-xylanase. CWA1/BC1 shows weak similarity to CBM2, and some Trp residues are conserved with bacterial CBM2 members. (B) Sequence alignment of CWA1/BC1, the BC1L proteins and CWA1/BC1 orthologs, Zea maiz Brittle Stalk 2 (ZmBk2) and Arabidopsis thaliana COBRA-LIKE 4 (AtCOBL4). The CBM-like sequence of CWA1/BC1, especially the Trp residues, is highly conserved among the analyzed sequences. Substituted Trp (W) residues to Val (V) in CWA1/BC1 are indicated by closed triangles. Numbers at the left are the positions of the amino acids in each protein, with gaps (dashes) included to maximize alignments. Identical and similar amino acids are shaded and gray, respectively.Our recent study showed that the defect of the rice CWA1/BC1 (CELL WALL ARCHITECTURE 1/BRITTLE CULM 1) gene induced abnormal secondary cell wall formation with amorphous and bulky structures at the cytoplasm side and CWA1/BC1 encodes one of COBRA-like glycosylphosphatidylinositol (GPI)-anchored proteins, which are specifically found in plants, suggesting that CWA1/BC1 regulates assembly of secondary cell wall materials in rice sclerenchyma. Furthermore, several reports have shown that the N-terminus of rice CWA1/BC1 and other COBRA-like GPI-anchored proteins in Arabidopsis (12 members) and maize Brittle Stalk 2 (Bk2) share weak similarity to a CBM2 in several bacterial cellulases.15,16 However, the importance of CBM-like sequence in COBRA family members has not been clarified. To investigate the nature of CWA1/BC1, we compared the CBM-like sequence in rice CWA1/BC1 with bacterial CBM2, 10 members of the BC1-like (BC1L) protein in rice and CWA1/BC1 orthologs, Arabidopsis COBL4 and maize Bk2. Furthermore, we constructed three-point mutated CWA1/BC1, in which three conserved Trp residues in CBM-like sequence were substituted for Val residues (CWA1/BC1W→V), and introduced it into the cwa1 mutant to evaluate the necessity of the CBM-like sequence for proper function of CWA1/BC1. We discuss a putative explanation, based on our results, of the properties and possible functions of CWA1/BC1.  相似文献   
108.
This study investigated the potential utilization of lacto-N-biose I (LNB) by individual strains of bifidobacteria. LNB is a building block for the human milk oligosaccharides, which have been suggested to be a factor for selective growth of bifidobacteria. A total of 208 strains comprising 10 species and 4 subspecies were analyzed for the presence of the galacto-N-biose/lacto-N-biose I phosphorylase (GLNBP) gene (lnpA) and examined for growth when LNB was used as the sole carbohydrate source. While all strains of Bifidobacterium longum subsp. longum, B. longum subsp. infantis, B. breve, and B. bifidum were able to grow on LNB, none of the strains of B. adolescentis, B. catenulatum, B. dentium, B. angulatum, B. animalis subsp. lactis, and B. thermophilum showed any growth. In addition, some strains of B. pseudocatenulatum, B. animalis subsp. animalis, and B. pseudolongum exhibited the ability to utilize LNB. With the exception for B. pseudocatenulatum, the presence of lnpA coincided with LNB utilization in almost all strains. These results indicate that bifidobacterial species, which are the predominant species found in infant intestines, are potential utilizers of LNB. These findings support the hypothesis that GLNBP plays a key role in the colonization of bifidobacteria in the infant intestine.Bifidobacteria are gram-positive anaerobic bacteria that naturally colonize the human intestinal tract and are believed to be beneficial to human health (21, 30). Breastfeeding has been shown to be associated with an infant fecal microbiota dominated by bifidobacteria, whereas the fecal microbiota of infants who are consuming alternative diets has been described as being mixed and adult-like (12, 21). It has been suggested that the selective growth of bifidobacteria observed in breast-fed newborns is related to the oligosaccharides and other factors that are contained in human milk (human milk oligosaccharides [HMOs]) (3, 4, 10, 11, 16, 17, 34). Kitaoka et al. (15) have recently found that bifidobacteria possess a unique metabolic pathway that is specific for lacto-N-biose I (LNB; Galβ1-3GlcNAc) and galacto-N-biose (GNB; Galβ1-3GalNAc). LNB is a building block for the type 1 HMOs [such as lacto-N-tetraose (Galβ1-3GlcNAcβ1-3Galβ1-4Glc), lacto-N-fucopentaose I (Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc), and lacto-N-difucohexaose I (Fucα1-2Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4Glc)], and GNB is a core structure of the mucin sugar that is present in the human intestine and milk (18, 27). The GNB/LNB pathway, as previously illustrated by Wada et al. (33), involves proteins/enzymes that are required for the uptake and degradation of disaccharides such as the GNB/LNB transporter (29, 32), galacto-N-biose/lacto-N-biose I phosphorylase (GLNBP; LnpA) (15, 24) (renamed from lacto-N-biose phosphorylase after the finding of phosphorylases specific to GNB [23] and LNB [22]), N-acetylhexosamine 1-kinase (NahK) (25), UDP-glucose-hexose 1-phosphate uridylyltransferase (GalT), and UDP-galactose epimerase (GalE). Some bifidobacteria have been demonstrated to be enzymatically equipped to release LNB from HMOs that have a type 1 structure (lacto-N biosidase; LnbB) (33) or GNB from the core 1-type O-glycans in mucin glycoproteins (endo-α-N-acetylgalatosaminidase) (6, 13, 14). It has been suggested that the presence of the LnbB and GNB/LNB pathways in some bifidobacterial strains could provide a nutritional advantage for these organisms, thereby increasing their populations within the ecosystem of these breast-fed newborns (33).The species that predominantly colonize the infant intestine are the bifidobacterial species B. breve, B. longum subsp. infantis, B. longum subsp. longum, and B. bifidum (21, 28). On the other hand, strains of B. adolescentis, B. catenulatum, B. pseudocatenulatum, and B. longum subsp. longum are frequently isolated from the adult intestine (19), and strains of B. animalis subsp. animalis, B. animalis subsp. lactis, B. thermophilum and B. pseudolongum have been shown to naturally colonize the guts of animals (1, 2, 7, 8). However, it is unclear whether there is a relationship between the differential colonization of the bifidobacterial species and the presence of the GNB/LNB pathway. In the present study, we investigated the ability of individual bifidobacterial strains in the in vitro fermentation of LNB and in addition, we also tried to determine whether or not the GLNBP gene (lnpA), which is a key enzyme of the GNB/LNB pathway, was present.  相似文献   
109.
110.
Egg production, daily ration, and growth efficiency in Sagitta crassa Tokioka are described along with the morphological characteristics of the ovary and body during laboratory observations. Feeding by S. crassa in small containers containing 50 or 100 ml sea water and feeding rates bore a linear relationship to food concentration from 5 to 20 copepods per 100 ml. Among 100 animals individually isolated in containers, 3 animals were the longest lived and the best egg producers. One of these produced eggs on more than 30 consecutive days, producing almost 1000 eggs. Egg production showed periodic change at intervals from 7 to 10 days. Seminal vesicles also became periodically filled or empty. Fluctuations in ovary length and morphological changes of ovary and body were observed through life. Daily ration of S. crassa ranged from 8.7 to 10.4 prey per day or ≈ 60 μg in dry wt. The specific daily ration ranged from 0.347 to 0.568. S. crassa had a growth efficiency (dry-wt basis) which increased during the early life of the animal (≈28%), then decreased with age (22 → nearly 0%). Reproductive efficiency ranged from 7.0 to 16.4%, with a mean of 12.5%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号