首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   24篇
  2023年   2篇
  2022年   1篇
  2021年   19篇
  2020年   7篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   20篇
  2015年   22篇
  2014年   19篇
  2013年   25篇
  2012年   30篇
  2011年   22篇
  2010年   19篇
  2009年   19篇
  2008年   17篇
  2007年   23篇
  2006年   20篇
  2005年   16篇
  2004年   17篇
  2003年   16篇
  2002年   16篇
  2001年   14篇
  2000年   10篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1985年   1篇
  1984年   6篇
  1983年   2篇
  1979年   1篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有436条查询结果,搜索用时 31 毫秒
51.
There are six putative genes for multidrug and toxic compound extrusion (MATE) family multidrug efflux pumps in the chromosome of Vibrio cholerae. We have so far analyzed two MATE family pumps in V. cholerae non-O1 NCTC4716. Here we cloned four remaining genes for putative MATE family efflux pumps by the PCR method from this microorganism and designated them as vcmB, vcmD, vcmH and vcmN. Each one of the four genes was introduced and expressed in the drug hypersusceptible host Escherichia coli KAM32 cells. We observed elevated MICs of multiple antimicrobial agents, such as fluoroquinolones, aminoglycosides, ethidium bromide and Hoechst 33342 in the transformants. Energydependent efflux of substrate was observed with the transformed cells. We found that efflux activities of VcmB, VcmD and VcmH were Na+-dependent, but that of VcmN was Na+-independent. Thus, all six of the MATE family multidrug efflux pumps of V. cholerae non-O1 have been characterized. We also found that all six genes were expressed in cells of V. cholerae non-O1.  相似文献   
52.
Clostridium difficile is a bacterium that causes disease of the large intestine, particularly after treatment with antibiotics. The bacterium produces two toxins (A and B) that are responsible for the pathology of the disease. In addition, a number of bacterial virulence factors associated with adhesion to the gut have previously been identified, including the cell wall protein Cwp66, the high-molecular weight surface layer protein (HMW-SLP) and the flagella. As the genome sequence predicts many other cell wall associated proteins, we have investigated the diversity of proteins in cell wall extracts, with the aim of identifying further virulence factors. We have used a number of methods to remove the proteins associated with the cell wall of C. difficile. Two of the resulting extracts, obtained using low pH glycine treatment and lysozyme digestion of the cell wall, have been analysed in detail by two-dimensional electrophoresis and mass spectrometry. One hundred and nineteen spots, comprising 49 different proteins, have been identified. The two surface layer proteins (SLPs) are the most abundant proteins, and we have also found components of the flagellum. Interestingly, we have also determined that a number of paralogs of the HMW-SLP are expressed, and these could represent targets for further investigation as virulence factors.  相似文献   
53.
We present reference maps of the mouse serum proteome (run under reducing and non-reducing conditions), from control animals, from mice injected with lipopolysaccharide (LPS) to induce systemic inflammation, and from mice transgenic for human apolipoproteins A-I and A-II. Seventy-seven spots/spot chains from the reducing gels were identified by HPLC MS/MS, representing 28 distinct proteins, including a species-specific protease inhibitor, contrapsin, and high levels of carboxylesterase. The concentrations of acute-phase reactants were monitored for 96 h after LPS challenge. The greatest changes (four-fold 48 h after LPS administration) were observed for haptoglobin and hemopexin. Orosomucoid/alpha(1)-acid glycoprotein and apolipoprotein A-I increased steadily, to 50-60% above baseline at 96 h from stimulation. In mice transgenic for human apolipoprotein A-I the levels of expression of orosomucoid/alpha(1)-acid glycoprotein, alpha(1)-macroglobulin, esterase, kininogen and contrapsin were altered compared to knockout mice lacking apolipoprotein A-I. In contrast, except for the presence of apolipoprotein A-II, no statistically significant difference was observed in mice transgenic for human apolipoprotein A-II.  相似文献   
54.
Regulation of protein function by reversible cysteine-targeted oxidation can be achieved by multiple mechanisms, such as S-glutathiolation, S-nitrosylation, sulfenic acid, sulfinic acid, and sulfenyl amide formation, as well as intramolecular disulfide bonding of vicinal thiols. Another cysteine oxidation state with regulatory potential involves the formation of intermolecular protein disulfides. We utilized two-dimensional sequential non-reducing/reducing SDS-PAGE (diagonal electrophoresis) to investigate intermolecular protein disulfide formation in adult cardiac myocytes subjected to a series of interventions (hydrogen peroxide, S-nitroso-N-acetylpenicillamine, doxorubicin, simulated ischemia, or metabolic inhibition) that alter the redox status of the cell. More detailed experiments were undertaken with the thiol-specific oxidant diamide (5 mm), a concentration that induces a mild non-injurious oxidative stress. This increase in cellular oxidation potential caused global intermolecular protein disulfide formation in cytosolic, membrane, and myofilament/cytoskeletal compartments. A large number of proteins that undergo these associations were identified using liquid chromatography-mass spectrometry/mass spectrometry. These associations, which involve metabolic and antioxidant enzymes, structural proteins, signaling molecules, and molecular chaperones, were confirmed by assessing "shifts" on non-reducing immunoblots. The observation of widespread protein-protein disulfides indicates that these oxidative associations are likely to be fundamental in how cells respond to redox changes.  相似文献   
55.
The pill is the most popular family planning method in Bangladesh. However, the failure rate of this method in Matlab, a typical rural area, has been found to be very high. It is estimated that with the current level of failure of the pill and other temporary contraceptives in Matlab, it is unlikely that fertility in Bangladesh will come down to replacement level without a change in contraceptive method mix. It is, therefore, important to know the reasons for the high failure in pill use. Data for this study came from a case-control study in Matlab. A pill failure was considered a case, and no-failure was considered a control. The study included 167 cases and 167 controls. In addition, five focus group discussions were conducted to supplement the data collected from the cases and controls to gain a deeper understanding of pill failure. Results of the analysis of both quantitative and qualitative data suggested that the following were the risk factors for pill failure: no mobility of women, poor knowledge of women about the effectiveness and consequences of drop-out from pill use, weak confidence in the pill, a gap between the use of subsequence pill cycles, delay in starting the pill after menstruation for the first use, not taking any measures consistently for missing the pill, and not following the arrow sign given on the pill cycle. Extensive training of field workers and pill users, covering the reasons for pill failure identified in this study and strong supervision of the work of field workers, is likely to reduce the rate of pill failure in Bangladesh. Also, information, education and communication services for users, and management of side-effects, may be helpful in reducing pill failure.  相似文献   
56.
57.
Eukaryotic cells plasma membranes are organized into microdomains of specialized function such as lipid rafts and caveolae, with a specific lipid composition highly enriched in cholesterol and glycosphingolipids. In addition to their role in regulating signal transduction, multiple functions have been proposed, such as anchorage of receptors, trafficking of cholesterol, and regulation of permeability. However, an extensive understanding of their protein composition in human heart, both in failing and non-failing conditions, is not yet available. Membrane microdomains were isolated from left ventricular tissue of both failing (n = 15) and non-failing (n = 15) human hearts. Protein composition and differential protein expression was explored by comparing series of 2-D maps and subsequent identification by LC-MS/MS analysis. Data indicated that heart membrane microdomains are enriched in chaperones, cytoskeletal-associated proteins, enzymes and protein involved in signal transduction pathway. In addition, differential protein expression profile revealed that 30 proteins were specifically up- or down-regulated in human heart failure membrane microdomains. This study resulted in the identification of human heart membrane microdomain protein composition, which was not previously available. Moreover, it allowed the identification of multiple proteins whose expression is altered in heart failure, thus opening new perspectives to determine which role they may play in this disease.  相似文献   
58.
Glutathione disulfide (GSSG) accumulates in cells under an increased oxidant load, which occurs during neurohormonal or metabolic stimulation as well as in many disease states. Elevated GSSG promotes protein S-glutathiolation, a reversible post-translational modification, which can directly alter or regulate protein function. We developed novel strategies for the study of protein S-glutathiolation that involved the simple synthesis of N,N-biotinyl glutathione disulfide (biotin-GSSG). Biotin-GSSG treatment of cells mimics a defined component of oxidative stress, namely a shift in the glutathione redox couple to the oxidized disulfide state. This induces widespread protein S-glutathiolation, which was detected on non-reducing Western blots probed with streptavidin-horseradish peroxidase and imaged using confocal fluorescence microscopy and ExtrAvidin-FITC. S-Glutathiolated proteins were purified using streptavidin-agarose and identified using proteomic methods. We conclude that biotin-GSSG is a useful tool in the investigation of protein S-glutathiolation and offers significant advantages over conventional methods or antibody-based strategies. These novel approaches may find widespread utility in the study of disease or redox signaling models where GSSG accumulation occurs.  相似文献   
59.
Using several model organisms it has been shown earlier that protein designability is related to contact density or fraction of buried residues and influence protein evolutionary rates dramatically. Here, using Homo sapiens as a model organism, we have analyzed two main folding classes (all-α and all-β) to examine the factors affecting their evolutionary rates. Since, secondary structures are the most fundamental components of the protein folding classes, we explored the effect of protein secondary structure composition on evolution. Our results show that sheet and helix fractions exhibit positive and negative correlations, respectively, with the rate of protein evolution. On dividing the secondary structure components according to solvent accessibility, linear regression model identified two factors namely buried sheet fraction and relative aggregation propensity. Both these factors together can explain about 13.4% variability in the rate of human protein evolution, while buried sheet residues can alone account to 9.9% variability.  相似文献   
60.
A copper(I) complex of 2-aminobenzenethiol, [Cu(abt)] (1), has been synthesized and characterized. The crystal structure determination indicates a two-dimensional metallopolymeric network formed by edge and corner sharing [Cu(μ3-S)N] coordination tetrahedra wherein the copper(I) centers are coordinated to three bridging thiolate donors and the amino group of 2-aminobenzenethiolate. The copper, the sulfur and the nitrogen atoms form sub-lattices that reveal independently striking similarities to the double-layers present in black phosphorus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号