首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   33篇
  2022年   7篇
  2021年   33篇
  2020年   9篇
  2019年   6篇
  2018年   13篇
  2017年   12篇
  2016年   17篇
  2015年   17篇
  2014年   30篇
  2013年   37篇
  2012年   47篇
  2011年   34篇
  2010年   18篇
  2009年   22篇
  2008年   21篇
  2007年   34篇
  2006年   40篇
  2005年   26篇
  2004年   30篇
  2003年   23篇
  2002年   14篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1989年   3篇
  1988年   5篇
  1986年   2篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1979年   5篇
  1977年   2篇
  1971年   4篇
  1961年   2篇
  1956年   2篇
  1955年   4篇
  1953年   1篇
  1951年   1篇
  1949年   1篇
  1941年   2篇
  1938年   1篇
  1937年   1篇
  1919年   1篇
排序方式: 共有589条查询结果,搜索用时 60 毫秒
61.
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans.  相似文献   
62.
In this study, we measured the concentration of some antioxidant substances in erythrocytes hemolysate, liver, kidney and brain in young and adult camels. It has been found that the activity of the antioxidant enzymes glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD) and the concentration of glutathione, ascorbic acid and alpha-tocopherol are high in both young and adult camels. GSH-Px and CAT activities were higher in adult camels than in the young whereas no significant difference in the activity of SOD between young and adult camels was noticed. Glutathione was present in all tissues studied. Ascorbic acid was found to have significantly higher values in young camels. From this study it could be concluded that, as in other mammals, camel tissues contain a powerful antioxidant system. The liver has the highest contents of antioxidants and antioxidant enzymes indicating that it plays an important role in pro-oxidants detoxification. Age has a variable effect on the antioxidant system in camels.  相似文献   
63.
This study was carried out to investigate the effects of 6-week aerobic exercise program upon blood Zn and Cu levels. There were 12 male university students with an average age of 21.67+/-0.89 years and no regular training habits participated in the study. The participants were subjected three days a week 1 hour a day continuous running program on treadmill with an intensity of 60-70% for a period of six weeks. They were fed with zinc and copper free diet throughout the study and it was made sure that they were not using copper or zinc containing vitamin tablets. The difference between the pre and post study period were found to be statistically significant as regards to both resting and maximal loading conditions (p<0.01). The pre and post training maxVO2 values were also found to be positively correlated with the copper and zinc levels in blood. Both the copper and zinc blood levels were found decreased after the training period p<0.05.  相似文献   
64.
Lycopene, a carotenoid present predominantly in tomatoes, is one of the most efficient antioxidants. This experiment was conducted to evaluate the effects of dietary lycopene supplementation on performance, carcass characteristics, biomarkers of oxidative stress (malondialdehyde (MDA) and homocysteine), and concentrations of vitamins C, E, A, cholesterol, triglyceride, and glucose in Japanese quails (Coturnix coturnix Japonica) exposed to high-ambient temperature of 34 °C. Two hundred and forty Japanese quails (10 day-old) were randomly assigned to eight treatment groups consisting of 10 replicates of three birds. The birds were kept at a temperature-controlled room at 22 °C (Thermoneutral, TN groups) or 34 °C (for 12 h/day; 09.00 am–05.00 pm; Heat stress, HS groups). Birds were fed either a basal (control) diet (TN and HS) or the basal diet supplemented with 50, 100 or 200 mg of lycopene/kg of diet. Lycopene supplementation linearly increased feed intake (P=0.05P=0.05), live weight gain (P=0.01P=0.01), feed efficiency (P=0.01P=0.01) and cold carcass weight (P=0.01P=0.01) and yield (P=0.05P=0.05) under heat stress conditions but did not show the same effect at thermoneutral conditions (P>0.05P>0.05). The interaction Serum vitamin C, E, and A (P=0.01P=0.01) concentrations increased linearly in birds reared at high temperature while non-significant changes occurred at TN groups. Homocysteine level in serum and malondialdehyde (MDA) levels in serum, liver, and heart (P=0.001P=0.001) linearly decreased in all birds of both TN and HS groups as dietary lycopene supplementation increased. Heat stress-induced increase in serum cholesterol (P=0.01P=0.01), triglycerides (P=0.05P=0.05) and glucose (P=0.01P=0.01) concentrations were linearly reversed by lycopene supplementation. Supplementation of lycopene increased the HDL concentration whereas, the VLDL and LDL concentrations reduced with lycopene supplementation (P=0.01P=0.01, linear), particularly at a dietary concentration of 200 mg/kg. Lycopene could not be detected in control birds while a linear increase was observed in the sera of lycopene supplemented birds The results of the study indicate that lycopene supplementation attenuated the increase in oxidative stress and depletion in antioxidants caused by heat stress in Japanese quails.  相似文献   
65.
66.
67.
68.
69.
Kabil O  Zhou Y  Banerjee R 《Biochemistry》2006,45(45):13528-13536
Cystathionine beta-synthase (CBS) catalyzes the first irreversible step in the transsulfuration pathway and commits the toxic metabolite, homocysteine, to the synthesis of cysteine. Mutations in CBS are the most common cause of severe hereditary hyperhomocysteinemia. The molecular basis of the organ-specific pathologies associated with CBS deficiency is unknown as is the significance of the reported interaction between CBS and Huntingtin protein. In this study, we have used the yeast two-hybrid approach to screen for proteins that interact with CBS and have identified several components of the sumoylation pathway including Ubc9, PIAS1, PIAS3, Pc2, and RanBPM. We demonstrate that CBS is modified by the small ubiquitin-like modifier-1 protein (SUMO-I) under both in vitro and in vivo conditions. Deletion analysis of CBS indicates that the C-terminal regulatory domain is required for interaction with proteins in the sumoylation machinery. Sumoylated CBS is present in the nucleus where it is associated with the nuclear scaffold. The discovery that CBS is a target of sumoylation adds another layer to the complex regulation of this enzyme and reveals a previously unknown residence for this protein, i.e., in the nucleus.  相似文献   
70.
PINK1, linked to familial Parkinson''s disease, is known to affect mitochondrial function. Here we identified a novel regulatory role of PINK1 in the maintenance of complex IV activity and characterized a novel mechanism by which NO signaling restored complex IV deficiency in PINK1 null dopaminergic neuronal cells. In PINK1 null cells, levels of specific chaperones, including Hsp60, leucine-rich pentatricopeptide repeat-containing (LRPPRC), and Hsp90, were severely decreased. LRPPRC and Hsp90 were found to act upstream of Hsp60 to regulate complex IV activity. Specifically, knockdown of Hsp60 resulted in a decrease in complex IV activity, whereas antagonistic inhibition of Hsp90 by 17-(allylamino) geldanamycin decreased both Hsp60 and complex IV activity. In contrast, overexpression of the PINK1-interacting factor LRPPRC augmented complex IV activity by up-regulating Hsp60. A similar recovery of complex IV activity was also induced by coexpression of Hsp90 and Hsp60. Drug screening identified ginsenoside Re as a compound capable of reversing the deficit in complex IV activity in PINK1 null cells through specific increases of LRPPRC, Hsp90, and Hsp60 levels. The pharmacological effects of ginsenoside Re could be reversed by treatment of the pan-NOS inhibitor l-NG-Nitroarginine Methyl Ester (l-NAME) and could also be reproduced by low-level NO treatment. These results suggest that PINK1 regulates complex IV activity via interactions with upstream regulators of Hsp60, such as LRPPRC and Hsp90. Furthermore, they demonstrate that treatment with ginsenoside Re enhances functioning of the defective PINK1-Hsp90/LRPPRC-Hsp60-complex IV signaling axis in PINK1 null neurons by restoring NO levels, providing potential for new therapeutics targeting mitochondrial dysfunction in Parkinson''s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号