首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13243篇
  免费   1037篇
  国内免费   22篇
  2023年   93篇
  2022年   87篇
  2021年   227篇
  2020年   174篇
  2019年   228篇
  2018年   416篇
  2017年   355篇
  2016年   464篇
  2015年   644篇
  2014年   677篇
  2013年   937篇
  2012年   1098篇
  2011年   1082篇
  2010年   689篇
  2009年   568篇
  2008年   834篇
  2007年   801篇
  2006年   704篇
  2005年   678篇
  2004年   570篇
  2003年   518篇
  2002年   474篇
  2001年   187篇
  2000年   212篇
  1999年   163篇
  1998年   119篇
  1997年   78篇
  1996年   75篇
  1995年   63篇
  1994年   45篇
  1993年   56篇
  1992年   57篇
  1991年   50篇
  1990年   58篇
  1989年   45篇
  1988年   45篇
  1987年   38篇
  1986年   56篇
  1985年   37篇
  1984年   51篇
  1983年   40篇
  1982年   39篇
  1981年   29篇
  1980年   44篇
  1979年   47篇
  1978年   49篇
  1977年   36篇
  1974年   23篇
  1973年   24篇
  1968年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
We have recently cloned three DNA fragments (In-2.6, In-1.0, and In-0.6) of the noncultured, bacterial-like organism (BLO) associated with citrus greening disease. Nucleotide sequence determination has shown that fragment In-2.6 is part of therplKAJL-rpoBC gene cluster, a well-known operon in eubacteria. The DNA fragment upstream of and partially overlapping with In-2.6 could be isolated and was shown to be thenusG gene. InEscherichia coli, nusG is also immediately upstream ofrplKAJL-rpoBC. Fragment In-1.0 carries the gene for a bacteriophage type DNA polymerase. Fragment In-0.6 could not be identified.When In-2.6 was used, at high stringency, as a probe to detect greening BLO strains in infected plants, hybridization was obtained with all Asian strains tested, but not with the African strain examined. At lower stringencies, In-2.6 was able to detect also the African strain. The implications of these reults in the taxonomical position of the greening BLO are discussed.  相似文献   
102.
Raspberry bushy dwarf virus (RBDV), recently renamed to Idaeovirus rubi, is one of the most common viruses infecting Rubus species worldwide but there is still a limited number of genome sequences available in the GenBank database and the majority of the sequences include partial sequences of RNA-1 and RNA-2. The distribution and incidence of RBDV in main raspberry and blackberry growing provinces in Turkey were monitored during 2015–2019 and 537 Rubus spp. samples were tested by both DAS-ELISA and RT-PCR. Among the tested samples, 36 samples tested positive for RBDV by DAS-ELISA and 67 samples by RT-PCR. There was relatively low nucleotide diversity among the Turkish isolates. Turkish isolates shared 93%–97.7%, 84.3%–98.9%, and 85%–99.2% nucleotide sequence identities with available sequences in the GenBank, in partial RNA-1, movement protein (MP) and coat protein (CP) genes, respectively. In the phylogenetic tree constructed for RNA-1, MP, and CP sequences, all Turkish raspberry isolates were clustered in a distinct clade. However, the blackberry isolates showed considerable variation in nucleotide sequences and were placed in three distinct groups. The divergent blackberry isolates showed high variability in MP (84.5%–89.3%) and CP (85.5%–89.7%) regions and were placed in a distinct group. The rest of blackberry isolates clustered together with sweet cherry RBDV isolates adjacent to the grapevine clade or together with raspberry isolates. The comparative analysis conducted on three RNA segments of RBDV highlighted the high sequence diversity of Turkish RBDV isolates. This study also emphasizes the importance of regular monitoring of RBDV infections in Turkey, with special regard to those Rubus spp. and grapevine accessions employed in conservation and selection programmes. In particular, the presence of new RBDV genetic variants and infection of Rubus species must be taken into account to choose a correct detection protocol and management strategy.  相似文献   
103.
Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm. The population of Vibrio crassostreae, a species associated specifically to oysters, was genetically structured into clades of near clonal strains, leading to the isolation of closely related phages forming large modules in phage–bacterial infection networks. For Vibrio chagasii, which blooms in the water column, a lower number of closely related hosts and a higher diversity of isolated phages resulted in small modules in the phage–bacterial infection network. Over time, phage load was correlated with V. chagasii abundance, indicating a role of host blooms in driving phage abundance. Genetic experiments further demonstrated that these phage blooms can generate epigenetic and genetic variability that can counteract host defence systems. These results highlight the importance of considering both the environmental dynamics and the genetic structure of the host when interpreting phage–bacteria networks.  相似文献   
104.
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the ‘theatre’ in which ecology and evolution are two interacting ‘players’. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.  相似文献   
105.
106.
107.
108.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
109.
110.

Aim

The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities.

Location

Global ocean, 0–500 m depth.

Time Period

2008–2019.

Major Taxa Studied

Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria.

Methods

From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (>600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA).

Results

Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions.

Main Conclusions

In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号