首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   913篇
  免费   110篇
  2021年   20篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2016年   8篇
  2015年   31篇
  2014年   18篇
  2013年   26篇
  2012年   30篇
  2011年   38篇
  2010年   28篇
  2009年   27篇
  2008年   29篇
  2007年   45篇
  2006年   44篇
  2005年   28篇
  2004年   29篇
  2003年   39篇
  2002年   33篇
  2001年   30篇
  2000年   33篇
  1999年   25篇
  1998年   23篇
  1997年   15篇
  1996年   14篇
  1995年   8篇
  1994年   10篇
  1993年   10篇
  1992年   41篇
  1991年   23篇
  1990年   32篇
  1989年   22篇
  1988年   19篇
  1987年   19篇
  1986年   21篇
  1985年   15篇
  1984年   14篇
  1983年   18篇
  1982年   10篇
  1981年   8篇
  1980年   10篇
  1979年   6篇
  1978年   11篇
  1977年   5篇
  1975年   5篇
  1974年   13篇
  1973年   10篇
  1972年   10篇
  1971年   5篇
  1970年   8篇
排序方式: 共有1023条查询结果,搜索用时 15 毫秒
91.
An asymmetric NFAT1 dimer on a pseudo-palindromic kappa B-like DNA site   总被引:1,自引:0,他引:1  
The crystal structure of the NFAT1 Rel homology region (RHR) bound to a pseudo-palindromic DNA site reveals an asymmetric dimer interaction between the RHR-C domains, unrelated to the contact seen in Rel dimers such as NF kappa B. Binding studies with a form of the NFAT1 RHR defective in the dimer contact show loss of cooperativity and demonstrate that the same interaction is present in solution. The structure we have determined may correspond to a functional NFAT binding mode at palindromic sites of genes induced during the anergic response to weak TCR signaling.  相似文献   
92.
E2F plays critical roles in cell cycle progression by regulating the expression of genes involved in nucleotide synthesis, DNA replication, and cell cycle control. We show that the combined loss of E2F1 and E2F2 in mice leads to profound cell-autonomous defects in the hematopoietic development of multiple cell lineages. E2F2 mutant mice show erythroid maturation defects that are comparable with those observed in patients with megaloblastic anemia. Importantly, hematopoietic defects observed in E2F1/E2F2 double-knockout (DKO) mice appear to result from impeded S phase progression in hematopoietic progenitor cells. During DKO B-cell maturation, differentiation beyond the large pre-BII-cell stage is defective, presumably due to failed cell cycle exit, and the cells undergo apoptosis. However, apoptosis appears to be the consequence of failed maturation, not the cause. Despite the accumulation of hematopoietic progenitor cells in S phase, the combined loss of E2F1 and E2F2 results in significantly decreased expression and activities of several E2F target genes including cyclin A2. Our results indicate specific roles for E2F1 and E2F2 in the induction of E2F target genes, which contribute to efficient expansion and maturation of hematopoietic progenitor cells. Thus, E2F1 and E2F2 play essential and redundant roles in the proper coordination of cell cycle progression with differentiation which is necessary for efficient hematopoiesis.  相似文献   
93.
This study examined the relationship between force and cytosolic free calcium concentration ([Ca2+]c) in different fiber types from Xenopus before, during, and after cells underwent postcontractile depression (PCD). During a standardized fatigue run, force in the two fast fatiguing (FF) fiber types (types 1 and 2, n = 10) fell more quickly (5.8 vs. 8.1 min) and to a greater degree [0.36 vs. 0.51 of initial (P(o))] than in the slow fatiguing (SF) fiber type (type 3, n = 11). After the initial fatigue run, both FF and SF experienced a drop in force to <15% P(o) (PCD) at a similar time (20.6 vs. 21.4 min). A second stimulation period, undertaken during PCD, produced significant recovery of force in both groups, but significantly more so in SF than FF (64 +/- 7 vs. 29 +/- 2% P(o)). This force recovery during PCD was accompanied by a significant increase in peak [Ca2+]c, particularly in SF. However, despite the significant recovery of force during stimulation while in PCD, the amount of force produced for a given peak [Ca2+]c was significantly lower in both groups during PCD than at any other point in the experiment. A final stimulation period, initiated when all fibers had recovered from PCD, demonstrated a recovery of both force and peak [Ca2+]c in both groups, but this recovery was significantly greater in SF vs. FF. These data demonstrate that with continuous electrical stimulation, it is possible to produce a significant recovery of force production during the normally quiescent period of PCD, but that it occurs with a decreased muscle force production for a given peak [Ca2+]c. This suggests that factors other than structural alterations of the sarcoplasmic reticulum are likely the cause of PCD in these fibers.  相似文献   
94.
95.
2,4-dichlorophenoxyacetic acid (2,4-D)/alpha-ketoglutarate (alpha-KG) dioxygenase (TfdA) is an Fe(II)-dependent enzyme that catalyzes the first step in degradation of the herbicide 2,4-D. The active site structures of a small number of enzymes within the alpha-KG-dependent dioxygenase superfamily have been characterized and shown to have a similar HXDX(50-70)HX(10)RXS arrangement of residues that make up the binding sites for Fe(II) and alpha-KG. TfdA does not have obvious homology to the dioxygenases containing the above motif but is related in sequence to eight other enzymes in the superfamily that form a distinct consensus sequence (HX(D/E)X(138-207) HX(10)R/K). Variants of TfdA were created to examine the roles of putative metal-binding residues and the functions of the other seven histidines in this protein. The H167A, H200A, H213A, H245A, and H262A forms of TfdA formed inclusion bodies when overproduced in Escherichia coli DH5alpha; however, these proteins were soluble when fused to the maltose-binding protein (MBP). MBP-TfdA exhibited kinetic parameters similar to the native enzyme. The H8A and H235A variants were catalytically similar to wild-type TfdA. MBP-H213A and H216A TfdA have elevated K(m) values for 2,4-D, and the former showed a decreased k(cat), suggesting these residues may affect substrate binding or catalysis. The H113A, D115A, MBP-H167A, MBP-H200A, MBP-H245A and MBP-H262A variants of TfdA were inactive. Gel filtration analysis revealed that the latter two proteins were highly aggregated. The remaining four inactive variants were examined in their Cu(II)-substituted forms by EPR and electron spin-echo envelope modulation (ESEEM) spectroscopic methods. Changes in EPR spectra upon addition of substrates indicated that copper was present at the active site in the H113A and D115A variants. ESEEM analysis revealed that two histidines are bound equatorially to the copper in the D115A and MBP-H167A TfdA variants. The experimental data and sequence analysis lead us to conclude that His-113, Asp-115, and His-262 are likely metal ligands in TfdA and that His-213 may aid in catalysis or binding of 2,4-D.  相似文献   
96.
Human platelets express a protein phosphorylation system on their surface. A specific protein kinase C (PKC) antibody, monoclonal antibody (MAb) 1.9, which binds to the catalytic domain of PKC and inhibits its activity, causes the aggregation of intact platelets while inhibiting the phosphorylation of platelet surface proteins. Photoaffinity labeling with 100 nM 8-azido-[alpha(32)P]ATP identified this ecto-PKC as a single surface protein of 43 kDa sensitive to proteolysis by extracellular 0.0005% trypsin. Inhibition of the binding of 8-azido-[alpha(32)P]ATP to the 43-kDa surface protein by MAb 1.9 identified this site as the active domain of ecto-PKC. Covalent binding of the azido-ATP molecule to the 43-kDa surface protein inhibited the phosphorylative activity of the platelet ecto-PKC. Furthermore, PKC pseudosubstrate inhibitory peptides directly induced the aggregation of platelets and inhibited azido-ATP binding to the 43-kDa protein. Platelet aggregation induced by MAb 1.9 and by PKC inhibitory peptides required the presence of fibrinogen and resulted in an increase in the level of intracellular free calcium concentration. This increase in intracellular free calcium concentration induced by MAb 1.9 was found to be dependent on the binding of fibrinogen to activated GPIIb/IIIa integrins, suggesting that MAb 1.9 causes Ca(2+) flux through the fibrinogen receptor complex. We conclude that a decrease in the state of phosphorylation of platelet surface proteins caused by inhibition of ecto-PKC results in membrane rearrangements that can induce the activation of latent fibrinogen receptors, leading to platelet aggregation. Accordingly, the maintenance of a physiological steady state of phosphorylation of proteins on the platelet surface by ecto-PKC activity appears to be one of the homeostatic mechanisms that maintain fibrinogen receptors of circulating platelets in a latent state that cannot bind fibrinogen.  相似文献   
97.
We surveyed nine diallelic polymorphic sites on the Y chromosomes of 1,544 individuals from Africa, Asia, Europe, Oceania, and the New World. Phylogenetic analyses of these nine sites resulted in a tree for 10 distinct Y haplotypes with a coalescence time of approximately 150,000 years. The 10 haplotypes were unevenly distributed among human populations: 5 were restricted to a particular continent, 2 were shared between Africa and Europe, 1 was present only in the Old World, and 2 were found in all geographic regions surveyed. The ancestral haplotype was limited to African populations. Random permutation procedures revealed statistically significant patterns of geographical structuring of this paternal genetic variation. The results of a nested cladistic analysis indicated that these geographical associations arose through a combination of processes, including restricted, recurrent gene flow (isolation by distance) and range expansions. We inferred that one of the oldest events in the nested cladistic analysis was a range expansion out of Africa which resulted in the complete replacement of Y chromosomes throughout the Old World, a finding consistent with many versions of the Out of Africa Replacement Model. A second and more recent range expansion brought Asian Y chromosomes back to Africa without replacing the indigenous African male gene pool. Thus, the previously observed high levels of Y chromosomal genetic diversity in Africa may be due in part to bidirectional population movements. Finally, a comparison of our results with those from nested cladistic analyses of human mtDNA and beta-globin data revealed different patterns of inferences for males and females concerning the relative roles of population history (range expansions) and population structure (recurrent gene flow), thereby adding a new sex-specific component to models of human evolution.   相似文献   
98.
Cloning and sequencing of mouse Mf2 (mesoderm/mesenchyme forkhead 2) cDNAs revealed an open reading frame encoding a putative protein of 492 amino acids which, after in vitro translation, binds to a DNA consensus sequence. Mf2 is expressed at high levels in the ventral region of newly formed somites, in sclerotomal derivatives, in lateral plate and cephalic mesoderm and in the first and second branchial arches. Other regions of mesodermal expression include the developing tongue, meninges, nose, whiskers, kidney, genital tubercule and limb joints. In the nervous system Mf2 is transcribed in restricted regions of the mid- and forebrain. In several tissues, including the early somite, Mf2 is expressed in cell populations adjacent to regions expressing sonic hedgehog (Shh) and in explant cultures of presomitic mesoderm Mf2 is induced by Shh secreted by COS cells. These results suggest that Mf2, like other murine forkhead genes, has multiple roles in embryogenesis, possibly mediating the response of cells to signaling molecules such as SHH.  相似文献   
99.
100.
Burkholderia mallei is a highly pathogenic bacterium that causes the zoonosis glanders. Previous studies indicated that the genome of the organism contains eight genes specifying autotransporter proteins, which are important virulence factors of Gram-negative bacteria. In the present study, we report the characterization of one of these autotransporters, BpaB. Database searches identified the bpaB gene in ten B. mallei isolates and the predicted proteins were 99-100% identical. Comparative sequence analyses indicate that the gene product is a trimeric autotransporter of 1,090 amino acids with a predicted molecular weight of 105-kDa. Consistent with this finding, we discovered that recombinant bacteria expressing bpaB produce a protein of ≥300-kDa on their surface that is reactive with a BpaB-specific monoclonal antibody. Analysis of sera from mice infected with B. mallei indicated that animals produce antibodies against BpaB during the course of disease, thus establishing production of the autotransporter in vivo. To gain insight on its role in virulence, we inactivated the bpaB gene of B. mallei strain ATCC 23344 and determined the median lethal dose of the mutant in a mouse model of aerosol infection. These experiments revealed that the bpaB mutation attenuates virulence 8-14 fold. Using a crystal violet-based assay, we also discovered that constitutive production of BpaB on the surface of B. mallei promotes biofilm formation. To our knowledge, this is the first report of a biofilm factor for this organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号