首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2002年   1篇
  2001年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有24条查询结果,搜索用时 7 毫秒
21.
Scanning force microscopy in the applied biological sciences   总被引:3,自引:0,他引:3  
Fifteen years after its invention, the scanning force microscope (SFM) is rooted deep in the biological sciences. Here we discuss the use of SFM in biotechnology and biomedical research. The spectrum of applications reviewed includes imaging, force spectroscopy and mapping, as well as sensor applications. It is our hope that this review will be useful for researchers considering the use of SFM in their studies but are uncertain about its scope of capabilities. For the benefit of readers unfamiliar with SFM technology, the fundamentals of SFM imaging and force measurement are also briefly introduced.  相似文献   
22.
23.
The development of the parathyroid glands involves complex embryonic processes of cell-specific differentiation and migration of the glands from their sites of origin in the pharynx and pharyngeal pouches to their final positions along the ventral midline of the pharyngeal and upper thoracic region. The recognition of several distinct genetic forms of isolated and syndromic hypoparathyroidism led us to review the recent findings on the molecular mechanisms of the development of the parathyroid glands. Although far from being understood, a special emphasis was given to the possible role of tubulin chaperone E (TBCE), which was implicated in the pathogenesis of the hypopathyroidism, retardation and dysmorphism (HRD) syndrome. The novel finding that TBCE plays a critical role in the formation of the parathyroid opens a novel domain of research, not anticipated previously, into the complex process of parathyroid development.  相似文献   
24.
Based on immunoblotting procedure, the isolated epithelium of amphibian skin was found to contain a 180 kDa protein which cross-reacts with a polyclonal antiserum raised against human erythrocyte Band 3. Immunoperoxidase and immunofluorescence staining techniques indicated that the Band 3-related protein was localized in the mitochondria-rich cells (MRC) of this epithelium, with characteristic apical labelling pattern. Our findings show that the putative apical anion exchanger of the MRC is immunologically related to the band 3 multigenic family, which catalyzes Cl-HCO3 ? transmembranous exchange. It thus suggests a molecular basis for the role played by these cells in the transepithelial Cl pathway and acid-base regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号