首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8592篇
  免费   977篇
  国内免费   1篇
  2021年   102篇
  2019年   67篇
  2018年   115篇
  2017年   104篇
  2016年   143篇
  2015年   271篇
  2014年   294篇
  2013年   387篇
  2012年   431篇
  2011年   437篇
  2010年   283篇
  2009年   230篇
  2008年   376篇
  2007年   414篇
  2006年   357篇
  2005年   375篇
  2004年   337篇
  2003年   316篇
  2002年   304篇
  2001年   178篇
  2000年   189篇
  1999年   158篇
  1998年   132篇
  1997年   124篇
  1996年   101篇
  1995年   100篇
  1994年   118篇
  1993年   103篇
  1992年   162篇
  1991年   130篇
  1990年   124篇
  1989年   121篇
  1988年   112篇
  1987年   135篇
  1986年   103篇
  1985年   142篇
  1984年   147篇
  1983年   110篇
  1982年   128篇
  1981年   119篇
  1980年   105篇
  1979年   94篇
  1978年   67篇
  1977年   76篇
  1976年   83篇
  1975年   67篇
  1974年   77篇
  1973年   67篇
  1972年   60篇
  1969年   58篇
排序方式: 共有9570条查询结果,搜索用时 15 毫秒
11.
12.
13.
Conformational exchange has been demonstrated within the regulatory domain of calcium-saturated cardiac troponin C when bound to the NH2-terminal domain of cardiac troponin I-(1-80), and cardiac troponin I-(1-80)DD, having serine residues 23 and 24 mutated to aspartate to mimic the phosphorylated form of the protein. Binding of cardiac troponin I-(1-80) decreases conformational exchange for residues 29, 32, and 34. Comparison of average transverse cross correlation rates show that both the NH2- and COOH-terminal domains of cardiac troponin C tumble with similar correlation times when bound to cardiac troponin I-(1-80). In contrast, the NH2- and COOH-terminal domains in free cardiac troponin C and cardiac troponin C bound cardiac troponin I-(1-80)DD tumble independently. These results suggest that the nonphosphorylated cardiac specific NH2 terminus of cardiac troponin I interacts with the NH2-terminal domain of cardiac troponin C.  相似文献   
14.
15.
Evaluation of the relationships between muscle structure and digging function in fossorial species is limited. Badgers and other fossorial specialists are expected to have massive forelimb muscles with long fascicles capable of substantial shortening for high power and applying high out‐force to the substrate. To explore this hypothesis, we quantified muscle architecture in the thoracic limb of the American badger (Taxidea taxus) and estimated the force, power, and joint torque of its intrinsic musculature in relation to the use of scratch‐digging behavior. Architectural properties measured were muscle mass, belly length, fascicle length, pennation angle, and physiological cross‐sectional area. Badgers possess hypertrophied shoulder flexors/humeral retractors, elbow extensors, and digital flexors. The triceps brachii is particularly massive and has long fascicles with little pennation, muscle architecture consistent with substantial shortening capability, and high power. A unique feature of badgers is that, in addition to elbow joint extension, two biarticular heads (long and medial) of the triceps are capable of applying high torques to the shoulder joint to facilitate retraction of the forelimb throughout the power stroke. The massive and complex digital flexors show relatively greater pennation and shorter fascicle lengths than the triceps brachii, as well as compartmentalization of muscle heads to accentuate both force production and range of shortening during flexion of the carpus and digits. Muscles of most functional groups exhibit some degree of specialization for high force production and are important for stabilizing the shoulder, elbow, and carpal joints against high limb forces generated during powerful digging motions. Overall, our findings support the hypothesis and indicate that forelimb muscle architecture is consistent with specializations for scratch‐digging. Quantified muscle properties in the American badger serve as a comparator to evaluate the range of diversity in muscle structure and contractile function that exists in mammals specialized for fossorial habits. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
16.
17.
18.
The effects of mouse interferon-alpha (MuIFN-alpha), -beta (MuIFN-beta), and -gamma (MuIFN-gamma) on macrophage activation for tumor cell killing were determined by using proteose peptone-elicited peritoneal macrophages from C3H/HeN and C3H/HeJ mice under conditions that either included or were free of detectable endotoxin. Alone, under the conditions used, none of the interferons was able to activate macrophages directly for tumor cell killing. However, with a second signal provided to responsive macrophages by contaminating endotoxin, added bacterial lipopolysaccharide (LPS), or heat-killed Listeria monocytogenes (HKLM), all three types of interferon induced cytolytic activity, with MuIFN-gamma approximately 500 to 1000-fold more active than either MuIFN-alpha or -beta. Thus, all three interferons were able to prime macrophages for killing but required a second signal before cytolytic activity could be expressed. When MuIFN-gamma was mixed with either MuIFN-alpha or -beta and placed on macrophages, little or no killing developed. Mixtures of MuIFN-gamma with either MuIFN-alpha or -beta did increase the sensitivity of macrophages to triggering by LPS, however, compared with macrophages treated with MuIFN-gamma alone. The results are collectively important because they i) confirm that significant quantitative differences exist between the various interferons with regard to their capacity to prime macrophages for tumor cell killing; ii) indicate that to be an efficient activator each type of interferon must be combined with a second stimulus, such as LPS or HKLM; iii) show that neither MuIFN-alpha nor -beta can provide an efficient second triggering signal for macrophages that are primed by MuIFN-gamma; and iv) document that mixtures of MuIFN-gamma with either MuIFN-alpha or -beta are most efficient at inducing priming, compared with any one of the interferons used alone.  相似文献   
19.
Dysfunctional pulmonary homeostasis and repair, including diseases such as pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), and tumorigenesis have been increasing over the past decade, a fact that heavily implicates environmental influences. Several investigations have suggested that in response to increased transforming growth factor - beta (TGFβ) signaling, the alveolar type II (ATII) epithelial cell undergoes phenotypic changes that may contribute to the complex pathobiology of PF. We have previously demonstrated that increased tissue stiffness associated with PF is a potent extracellular matrix (ECM) signal for epithelial cell activation of TGFβ. The work reported here explores the relationship between tissue stiffness and exposure to environmental stimuli in the activation of TGFβ. We hypothesized that exposure of ATII cells to fine particulate matter (PM2.5) will result in enhanced cell contractility, TGFβ activation, and subsequent changes to ATII cell phenotype. ATII cells were cultured on increasingly stiff substrates with or without addition of PM2.5. Exposure to PM2.5 resulted in increased activation of TGFβ, increased cell contractility, and elongation of ATII cells. Most notably, on 8 kPa substrates, a stiffness greater than normal but less than established fibrotic lung, addition of PM2.5 resulted in increased cortical cell stiffness, enhanced actin staining and cell elongation; a result not seen in the absence of PM2.5. Our work suggests that PM2.5 exposure additionally enhances the existing interaction between ECM stiffness and TGFβ that has been previously reported. Furthermore, we show that this additional enhancement is likely a consequence of intracellular reactive oxygen species (ROS) leading to increased TGFβ signaling events. These results highlight the importance of both the micromechanical and biochemical environment in lung disease initiation and suggest that individuals in early stages of lung remodeling during fibrosis may be more susceptible than healthy individuals when exposed to environmental injury adjuvants.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号