首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   9篇
  318篇
  2023年   5篇
  2022年   12篇
  2021年   15篇
  2020年   12篇
  2019年   6篇
  2018年   10篇
  2017年   7篇
  2016年   9篇
  2015年   7篇
  2014年   15篇
  2013年   13篇
  2012年   24篇
  2011年   10篇
  2010年   24篇
  2009年   10篇
  2008年   15篇
  2007年   8篇
  2006年   6篇
  2005年   11篇
  2004年   15篇
  2003年   10篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1986年   5篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1965年   2篇
  1962年   1篇
  1960年   2篇
  1955年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
81.
82.
Fresh harvested dates are perishable and there is a need for extending their shelf life while preserving their fresh like quality characteristics. This study evaluates three different freezing methods, namely cryogenic freezing (CF) using liquid nitrogen; individual quick freezing (IQF) and conventional slow freezing (CSF) in preserving the quality and stability of dates during frozen storage. Fresh dates were frozen utilizing the three methods. The produced frozen dates were frozen stored for nine months. The color values, textural parameters, and nutrition qualities were measured for fresh dates before freezing and for the frozen dates every three months during the frozen storage. The frozen dates’ color values were affected by the freezing method and the frozen storage period. There are substantial differences in the quality of the frozen fruits in favor of cryogenic freezing followed by individual quick freezing compared to the conventional slow freezing. The results revealed large disparity among the times of freezing of the three methods. The freezing time accounted to 10 min for CF, and around 80 min for IQF, and 1800 min for CSF method.  相似文献   
83.
84.
Ghrelin is a novel peptide that acts on the growth hormone (GH) secretagogue receptor in the pituitary and hypothalamus. It may function as a third physiological regulator of GH secretion, along with GH-releasing hormone and somatostatin. In addition to the action of ghrelin on the GH axis, it appears to have a role in the determination of energy homeostasis. Although feeding suppresses ghrelin production and fasting stimulates ghrelin release, the underlying mechanisms controlling this process remain unclear. The purpose of this study was to test the hypotheses, by use of a stepped hyperinsulinemic eu- hypo- hyperglycemic glucose clamp, that either hyperinsulinemia or hypoglycemia may influence ghrelin production. Having been stable in the period before the clamp, ghrelin levels rapidly fell in response to insulin infusion during euglycemia (baseline ghrelin 207 +/- 12 vs. 169 +/- 10 fmol/ml at t = 30 min, P < 0.001). Ghrelin remained suppressed during subsequent periods of hypoglycemia (mean glucose 53 +/- 2 mg/dl) and hyperglycemia (mean glucose 163 +/- 6 mg/dl). Despite suppression of ghrelin, GH showed a significant rise during hypoglycemia (baseline 4.1 +/- 1.3 vs. 28.2 +/- 3.9 microg/l at t = 120 min, P < 0.001). Our data suggest that insulin may suppress circulating ghrelin independently of glucose, although glucose may have an additional effect. We conclude that the GH response seen during hypoglycemia is not regulated by circulating ghrelin.  相似文献   
85.
Here a simple, reproducible, and versatile method is described for manufacturing protein and ligand chips. The photo-induced copolymerization of acrylamide-based gel monomers with different probes (oligonucleotides, DNA, proteins, and low-molecular ligands) modified by the introduction of methacrylic groups takes place in drops on a glass or silicone surface. All probes are uniformly and chemically fixed with a high yield within the whole volume of hydrogel semispherical chip elements that are chemically attached to the surface. Purified enzymes, antibodies, antigens, and other proteins, as well as complex protein mixtures such as cell lysates, were immobilized on a chip. Avidin- and oligohistidine-tagged proteins can be immobilized within biotin- and Ni-nitrilotriacetic acid-modified gel elements. Most gel-immobilized proteins maintain their biological properties for at least six months. Fluorescence and chemiluminescence microscopy were used as efficient methods for the quantitative analysis of the microchips. Direct on-chip matrix-assisted laser desorption ionization-time of flight mass spectrometry was used for the qualitative identification of interacting molecules and to analyze tryptic peptides after the digestion of proteins in individual gel elements. We also demonstrate other useful properties of protein microchips and their application to proteomics and diagnostics.  相似文献   
86.
Impaired endothelial cell proliferation has been proposed to be an early, critical defect contributing to the development of atherosclerosis. Recent studies show that high plasma tumor necrosis factor (TNF)-alpha levels and low serum ascorbic acid (AA) levels correlate with atherosclerosis severity. Additionally, AA has been reported to have potential beneficial effects in preventing atherosclerosis. Based on these studies, we investigated the role of AA (< or =1mM) on TNF-alpha-mediated vascular endothelial cell growth inhibition in vitro. In accordance with previous reports, we found that TNF-alpha alone inhibited endothelial cell proliferation. Further studies revealed that AA alone enhanced endothelial cell proliferation and that AA blocked endothelial cell growth inhibition induced by TNF-alpha. By contrast, we observed no effect of AA on endothelial cell activation or nuclear entry of nuclear factor-kappaB in response to TNF-alpha. The protective effect of AA on endothelial cell proliferation was not simply the result of its antioxidant activity but did correlate with collagen IV expression by endothelial cells. AA pre-treatment of proliferating endothelial cells promoted retinoblastoma protein (Rb) phosphorylation and decreased p53 levels when compared to untreated cells. Furthermore, the addition of AA to TNF-alpha-treated proliferating endothelial cells blocked both the inhibition of retinoblastoma protein phosphorylation and enhanced p53 expression induced by TNF-alpha. Consistent with these results, we found that AA protects endothelial cells against TNF-alpha-induced apoptosis. These studies highlight the potential therapeutic role of AA in promoting endothelial cell proliferation during inflammatory conditions, such as atherosclerosis and cardiovascular disease.  相似文献   
87.
88.
Field-grown spring wheat (Triticum aestivum L. cv. Dragon) was exposed to ambient and elevated CO2 concentrations (1.5 and 2 times ambient) in open-top chambers. Contents of non-structural carbohydrates were analysed enzymatically in leaves, stems and ears six times during the growing season. The impact of elevated CO2 on wheat carbohydrates was non-significant in most harvests. However, differences in the carbohydrate contents due to elevated CO2 were found in all plant compartments. Before anthesis, at growth stage (GS) 30 (the stem is 1 cm to the shoot apex), the plants grown in elevated CO2 contained significantly more water soluble carbohydrates (WSC), fructans, starch and total non-structural carbohydrates (TNC) in the leaves in comparison with the plants grown in ambient CO2. It is hypothesised that the plants from the treatments with elevated CO2 were sink-limited at GS30. After anthesis, the leaf WSC and TNC contents of the plants from elevated CO2 started to decline earlier than those of the plants from ambient CO2. This may indicate that the leaves of plants grown in the chambers with elevated CO2 senesced earlier. Elevated CO2 accelerated grain development: 2 weeks after anthesis, the plants grown in elevated CO2 contained significantly more starch and significantly less fructans in the ears compared to the plants grown in ambient CO2. Elevated CO2 had no effect on ear starch and TNC contents at the final harvest. Increasing the CO2 concentration from 360 to 520 μmol mol?1 had a larger effect on wheat non-structural carbohydrates than the further increase from 520 to 680 μmol mol?1. The results are discussed in relation to the effects of elevated CO2 on yield and yield components.  相似文献   
89.
90.
Deaths caused by coronavirus disease 2019 (COVID-19) are largely due to the lungs edema resulting from the disruption of the lung alveolo-capillary barrier, induced by SARS-CoV-2-triggered pulmonary cell apoptosis. However, the molecular mechanism underlying the proapoptotic role of SARS-CoV-2 is still unclear. Here, we revealed that SARS-CoV-2 membrane (M) protein could induce lung epithelial cells mitochondrial apoptosis. Notably, M protein stabilized B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) via inhibiting its ubiquitination and promoted BOK mitochondria translocation. The endodomain of M protein was required for its interaction with BOK. Knockout of BOK by CRISPR/Cas9 increased cellular resistance to M protein-induced apoptosis. BOK was rescued in the BOK-knockout cells, which led to apoptosis induced by M protein. M protein induced BOK to trigger apoptosis in the absence of BAX and BAK. Furthermore, the BH2 domain of BOK was required for interaction with M protein and proapoptosis. In vivo M protein recombinant lentivirus infection induced caspase-associated apoptosis and increased alveolar-capillary permeability in the mouse lungs. BOK knockdown improved the lung edema due to lentivirus-M protein infection. Overall, M protein activated the BOK-dependent apoptotic pathway and thus exacerbated SARS-CoV-2 associated lung injury in vivo. These findings proposed a proapoptotic role for M protein in SARS-CoV-2 pathogenesis, which may provide potential targets for COVID-19 treatments.Subject terms: Infectious diseases, Immunopathogenesis

In SARS-CoV-2-infected lung epithelial cells, endodomain of M protein binds to the BH2 domain of BOK and inhibits ubiquitination. BOK is stabilized and translocate to the mitochondrial outer membrane, promoting Cyt c release. Cyt c released outside the mitochondria activates CASP 9 mediated apoptosis, thereby inducing pulmonary edema.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号