首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   12篇
  2011年   5篇
  2010年   11篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   3篇
  2005年   8篇
  2004年   11篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有141条查询结果,搜索用时 421 毫秒
51.
Progenitor stromal cells derived from adipose tissue (ADSC) and bone marrow (BMDSC) hold great promise for use in the cell-based therapy of ischemic diseases. It was demonstrated that these cells secrete a number of angiogenic cytokines that stimulate vascularization. It was demonstrated that ADSC or BMDSC injected intramuscularly or intravenously into the animals with experimental hind-limb ischemia improve vascularization. However, low oxygen levels and inflammation may impair the viability and functional activity of transplanted cells. We have examined ADSC and BMDSC properties in vitro under hypoxic and inflammatory conditions. ADSC and BMDSC derived from Balb/c mice have been cultivated under hypoxia or in the presence of inflammatory cytokines. The viability of cells assessed by annexin V-PE binding and 7AAD storage, as well as by the quantitative TUNEL method, was not changed under hypoxic conditions Cell exposure to inflammatory cytokines induced apoptosis in 70% of cells. Inflammatory cytokines did not stimulate gene expression of angiogenic growth factors. Under hypoxia conditions up-regulation of genes for pro-angiogenic factors and down-regulation of anti-angiogenic genes were more apparent in ADSC. Using angiogenesis models in vitro and in vivo, we demonstrated that stromal cell maintenance under hypoxic conditions increased their ability to stimulate the growth of blood vessels.  相似文献   
52.
53.
Recently, microarray technology has increasingly been widely applied in glycobiology. This technology has rather evident potential advantages: unlimited number of carbohydrate ligands coated onto one small sized chip, enormously low consumption of both carbohydrate ligands and carbohydrate-binding proteins to be tested, etc. Literature data demonstrate that three approaches are used for glycoarray design. The first one is based on the physical adsorption of glycomolecules on a surface (as in a common ELISA), the second one-on covalent immobilization, and the third one-on a streptavidin-biotin system. In all of the described methods, carbohydrate ligands were placed on chips as a 2D monolayer and high sensitivity was achieved due to fluorescent detection. Notably, a tendency of stepping from model chips toward real multiarrays, where the number of carbohydrate ligands can be up to two hundred, has been observed the last 2 years, this already producing a number of interesting findings when studying carbohydrate-binding proteins. In 2005 new construction, 3D glycochip was described, where 150 mum diameter polyacrylamide gel elements serve as microreactors instead of 2D dots. As a result of the 3D placement of a ligand, two orders of magnitude increase of its density is possible, this providing principal signal improvement during fluorescent detection and increasing method sensitivity. At the same time, carbohydrate consumption is low, i.e., approximately 1 pmol per gel element. Copolymerization chemistry enables the immobilization of several glycomolecule classes to the gel, in particular, aminospacered oligosaccharides, polyacrylamide conjugates, and even 2-aminopyridine derivatives of oligosaccharides, which are widely used in the structural analysis of glycoprotein N-chains.  相似文献   
54.
Molecular Biology - Cytokines and acute phase proteins play an important role in the development of the immune response during inflammatory reactions. Depending on the type of disease, the...  相似文献   
55.
56.
57.
Microorganisms tend to colonize on solid metal/alloy surface in natural environment leading to loss of utility. Microbiologically influenced corrosion or biocorrosion usually increases the corrosion rate of steel articles due to the presence of bacteria that accelerates the anodic and/or cathodic corrosion reaction rate without any significant change in the corrosion mechanism. An attempt was made in the present study to protect hot-dip galvanized steel from such attack of biocorrosion by means of chemically modifying the zinc coating. W–TiO2 composite was synthesized and incorporated into the zinc bath during the hot-dipping process. The surface morphology and elemental composition of the hot-dip galvanized coupons were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The antifouling characteristics of the coatings were analyzed in three different solutions including distilled water, seawater, and seawater containing biofilm scrapings under immersed conditions. Apart from electrochemical studies, the biocidal effect of the composite was evaluated by analyzing the extent of bacterial growth due to the presence and absence of the composite based on the analysis of total extracellular polymeric substance and total biomass using microtiter plate assay. The biofilm-forming bacteria formed on the surface of the coatings was cultured on Zobell Marine Agar plates and studied. The composite was found to be effective in controlling the growth of bacteria and formation of biofilm thereafter.  相似文献   
58.
Radiotherapy is an important treatment modality for oral cancer. However, development of radioresistance is a major hurdle in the efficacy of radiotherapy in oral cancer patients. Identifying predictors of radioresistance is a challenging task and has met with little success. The aim of the present study was to explore the differential spectral profiles of the established radioresistant sublines and parental oral cancer cell lines by Raman spectroscopy. We have established radioresistant sublines namely, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B from its parental UPCI:SCC029B cell line, by using clinically admissible 2Gy fractionated ionizing radiation (FIR). The developed radioresistant character was validated by clonogenic cell survival assay and known radioresistance-related protein markers like Mcl-1, Bcl-2, Cox-2 and Survivin. Altered cellular morphology with significant increase (p<0.001) in the number of filopodia in radioresistant cells with respect to parental cells was observed. The Raman spectra of parental UPCI:SCC029B, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B cells were acquired and spectral features indicate possible differences in biomolecules like proteins, lipids and nucleic acids. Principal component analysis (PCA) provided three clusters corresponding to radioresistant 50Gy, 70Gy-UPCI:SCC029B sublines and parental UPCI:SCC029B cell line with minor overlap, which suggest altered molecular profile acquired by the radioresistant cells due to multiple doses of irradiation. The findings of this study support the potential of Raman spectroscopy in prediction of radioresistance and possibly contribute to better prognosis of oral cancer.  相似文献   
59.
Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth. Here we show that ASCs stimulate the regeneration of nerves in innervated mice's limbs and induce axon growth in subcutaneous matrigel implants. To investigate the mechanism of this action we analyzed different properties of these cells and showed that they express numerous genes of neurotrophins and extracellular matrix proteins required for the nerve growth and myelination. Induction of neural differentiation of ASCs enhances production of brain-derived neurotrophic factor (BDNF) as well as ability of these cells to induce nerve fiber growth. BDNF neutralizing antibodies abrogated the stimulatory effects of ASCs on the growth of nerve sprouts. These data suggest that ASCs induce nerve repair and growth via BDNF production. This stimulatory effect can be further enhanced by culturing the cells in neural differentiation medium prior to transplantation.  相似文献   
60.
Background and aimsCongenital pseudarthrosis of the tibia (CPT) is a rare orthopedic disease presenting spontaneous fractures that do not heal. The treatment of CPT is characterized by repeated surgical procedures that often fail, with the inevitable outcome of severe disability and amputation. We tested the hypothesis that CPT may benefit from regenerative strategies based on mesenchymal stromal cells (MSC) combined with platelet-rich fibrin (PRF) as a source of growth factors. The aim of the study was to verify whether laboratory testing to assess the osteogenic properties of MSC and the osteo-inductive activity of PRF correlated with the clinical outcome.MethodsTen patients affected by refractory CPT were treated by using MSC derived from the iliac crest (IC-MSC), PRF and lyophilized bone. In six patients, CPT was associated with type 1 neurofibromatosis (NF1). Biochemical, functional and molecular assays were performed to assess the intrinsic osteogenic potential of IC-MSC (cells cultured with fetal calf serum) and the osteo-inductive properties of PRF (cells cultured with autologous serum).ResultsBone consolidation was obtained in three patients who had CPT and NF1. In these patients, the IC-MSC exposed to autologous serum were able to form mineral nodules in vitro, while the mineralizing ability was totally abrogated in patients with a poor clinical outcome.ConclusionsCell therapy may be a useful tool for the treatment of refractory CPT because it increases the opportunity to achieve effective bone tissue regeneration. Our data suggest that the presence of pro-osteogenic growth factors is an essential requirement for bone healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号