首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   12篇
  2013年   7篇
  2012年   4篇
  2011年   4篇
  2010年   7篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2002年   2篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1970年   2篇
排序方式: 共有100条查询结果,搜索用时 46 毫秒
41.
We have shown that PKCdelta enhanced microvascular endothelial basal barrier function, correlating with elevated RhoA GTPase activity and increased focal contact formation. In the current study, we investigated signaling pathways important in PKCdelta modulation of barrier function in unstimulated endothelial cell monolayers by assessing the effects of PKCdelta inhibition in endothelial cells (EC) derived from rat pulmonary artery (PAEC) and epididymus (FPEC). Rottlerin exposure or Ad PKCdeltadn infection significantly enhanced monolayer permeability in both EC. Immunofluorescence analyses demonstrated fewer stress fibers and focal contacts in rottlerin-treated or Ad PKCdeltadn-infected EC; yet, PKCdelta inhibition caused no significant changes in microtubule structures. These changes correlated with a reduction in both focal adhesion kinase (FAK) and RhoA GTPase activities. Microfilament stabilization significantly attenuated the focal contact and barrier disruptive effects of rottlerin. FAK overexpression did not blunt the effects of rottlerin-induced barrier dysfunction or stress fiber and focal contact disruption. Conversely, GFP-linked dominant active RhoA overexpression protected EC from stress fiber and focal contact disruption induced by both rottlerin exposure and overexpression of PKCdelta dominant negative protein. Additionally, PKCdelta immunoprecipitated with p190RhoGAP and p120RasGAP, modulators of RhoA activity. Thus, PKCdelta may regulate basal endothelial barrier function by stabilizing microfilaments and focal contacts by regulating RhoA GTPase activity through upstream modulators, p190RhoGAP and p120RasGAP.  相似文献   
42.
The earliest step in Escherichia coli cell division consists of the assembly of FtsZ protein into a proto‐ring structure, tethered to the cytoplasmic membrane by FtsA and ZipA. The proto‐ring then recruits additional cell division proteins to form the divisome. Previously we described an ftsZ allele, ftsZL169R, which maps to the side of the FtsZ subunit and confers resistance to FtsZ assembly inhibitory factors including Kil of bacteriophage λ. Here we further characterize this allele and its mechanism of resistance. We found that FtsZL169R permits the bypass of the normally essential ZipA, a property previously observed for FtsA gain‐of‐function mutants such as FtsA* or increased levels of the FtsA‐interacting protein FtsN. Similar to FtsA*, FtsZL169R also can partially suppress thermosensitive mutants of ftsQ or ftsK, which encode additional divisome proteins, and confers strong resistance to excess levels of FtsA, which normally inhibit FtsZ ring function. Additional genetic and biochemical assays provide further evidence that FtsZL169R enhances FtsZ protofilament bundling, thereby conferring resistance to assembly inhibitors and bypassing the normal requirement for ZipA. This work highlights the importance of FtsZ protofilament bundling during cell division and its likely role in regulating additional divisome activities.  相似文献   
43.
44.
45.
46.
Tristetraprolin (TTP) is the prototype for a family of RNA binding proteins that bind the tumor necrosis factor (TNF) messenger RNA AU-rich element (ARE), causing deadenylation of the TNF poly(A) tail, RNA decay, and silencing of TNF protein production. Using mass spectrometry sequencing we identified poly(A) binding proteins-1 and -4 (PABP1 and PABP4) in high abundance and good protein coverage from TTP immunoprecipitates. PABP1 significantly enhanced TNF ARE binding by RNA EMSA and prevented TTP-initiated deadenylation in an in vitro macrophage assay of TNF poly(A) stability. Neomycin inhibited TTP-promoted deadenylation at concentrations shown to inhibit the deadenylases poly(A) ribonuclease and CCR4. Stably transfected RAW264.7 macrophages overexpressing PABP1 do not oversecrete TNF; instead they upregulate TTP protein without increasing TNF protein production. The PABP1 inhibition of deadenylation initiated by TTP does not require the poly(A) binding regions in RRM1 and RRM2, suggesting a more complicated interaction than simple masking of the poly(A) tail from a 3'-exonuclease. Like TTP, PABP1 is a substrate for p38 MAP kinase. Finally, PABP1 stabilizes cotransfected TTP in 293T cells and prevents the decrease in TTP levels seen with p38 MAP kinase inhibition. These findings suggest several levels of functional antagonism between TTP and PABP1 that have implications for regulation of unstable mRNAs like TNF.  相似文献   
47.

Background  

Pichia stipitis xylose reductase (Ps-XR) has been used to design Saccharomyces cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S. cerevisiae strain USM21.  相似文献   
48.
Synonymous codons are not used equally in many organisms, and the extent of codon bias varies among loci. Earlier studies have suggested that more highly expressed loci in Drosophila melanogaster are more biased, consistent with findings from several prokaryotes and unicellular eukaryotes that codon bias is partly due to natural selection for translational efficiency. We link this model of varying selection intensity to the population-genetics prediction that the effectiveness of natural selection is decreased under reduced recombination. In analyses of 385 D. melanogaster loci, we find that codon bias is reduced in regions of low recombination (i.e., near centromeres and telomeres and on the fourth chromosome). The effect does not appear to be a linear function of recombination rate; rather, it seems limited to regions with the very lowest levels of recombination. The large majority of the genome apparently experiences recombination at a sufficiently high rate for effective natural selection against suboptimal codons. These findings support models of the Hill-Robertson effect and genetic hitchhiking and are largely consistent with multiple reports of low levels of DNA sequence variation in regions of low recombination.   相似文献   
49.
We have determined the nucleotide sequence of a 1,200-base pair (bp) genomic fragment that includes the kappa-chain constant-region gene (C kappa) from two species of native Australian rodents, Rattus leucopus cooktownensis and Rattus colletti. Comparison of these sequences with each other and with other rodent C kappa genes shows three surprising features. First, the coding regions are diverging at a rate severalfold higher than that of the nearby noncoding regions. Second, replacement changes within the coding region are accumulating at a rate at least as great as that of silent changes. Third, most of the amino acid replacements are localized in one region of the C kappa domain--namely, the carboxy-terminal "bends" in the alpha-carbon backbone. These three features have previously been described from comparisons of the two allelic forms of C kappa genes in R. norvegicus. These data imply the existence of considerable evolutionary constraints on the noncoding regions (based on as yet undetermined functions) or powerful positive selection to diversify a portion of the constant-region domain (whose physiological significance is not known). These surprising features of C kappa evolution appear to be characteristic only of closely related C kappa genes, since comparison of rodent with human sequences shows the expected greater conservation of coding regions, as well as a predominance of silent nucleotide substitutions within the coding regions.   相似文献   
50.
The enzymatic cis-trans isomerization of nitrofuran derivatives has been proposed to occur via the formation of a radical anion intermediate. ESR investigations, in conjunction with intermediate neglect of differential overlap (INDO) molecular orbital calculations, support this concept by demonstrating the enzymatic generation of cis and trans radical anions of 3-(5-nitro-2-furyl)-2-(2-furyl) acrylamide. The INDO calculations further indicate that the rotational barrier between the cis and trans anion radicals of this compound is only 5--10 kcal/mol, whereas a 70 kcal/mol barrier exists for the parent geometric isomers. Hyperfine splitting constants for the cis-trans conformers have been assigned on the basis of INDO calculations. Surprisingly, only the nitrogen hyperfine splitting of the nitro group is distinguishably different in the two conformers, a result which is not inconsistent with the INDO calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号