首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   12篇
  2019年   4篇
  2018年   7篇
  2015年   4篇
  2014年   3篇
  2013年   11篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   7篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   9篇
  2000年   11篇
  1999年   4篇
  1998年   3篇
  1997年   11篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   11篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1983年   10篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1978年   8篇
  1977年   9篇
  1976年   11篇
  1975年   7篇
  1974年   5篇
  1973年   9篇
  1972年   4篇
  1971年   5篇
  1970年   4篇
  1969年   7篇
  1968年   5篇
  1967年   6篇
  1966年   5篇
  1965年   4篇
  1905年   3篇
排序方式: 共有337条查询结果,搜索用时 15 毫秒
91.
Nicotine was administered acutely and subchronically (14 days) to determine whether various synaptic mechanisms are selectively altered in the nigrostriatal and mesolimbic dopaminergic systems in the rat. When added to tissue preparations in vitro, nicotine had no effects on tyrosine hydroxylase, synaptosomal uptake of [3H]dopamine or binding of [3H]spiperone to D2 receptors in either system. However, acute treatment in vivo stimulated tyrosine hydroxylase activity in the nucleus accumbens. This effect was prevented by pretreatment with a nicotinic antagonist, suggesting that it was mediated by nicotinic receptors. Since subchronic exposure to nicotine had no effect on tyrosine hydroxylase, it appears that tolerance develops to this action. In vivo treatment with nicotine did not alter dopamine uptake or receptor binding. The results suggest that, in doses which result in moderate plasma levels, nicotine has selective stimulant actions on nerve terminals of the mesolimbic system.  相似文献   
92.
The overall scheme for control is as follows: central command sets basic patterns of cardiovascular effector activity, which is modulated via muscle chemo- and mechanoreflexes and arterial mechanoreflexes (baroreflexes) as appropriate error signals develop. A key question is whether the primary error corrected is a mismatch between blood flow and metabolism (a flow error that accumulates muscle metabolites that activate group III and IV chemosensitive muscle afferents) or a mismatch between cardiac output (CO) and vascular conductance [a blood pressure (BP) error] that activates the arterial baroreflex and raises BP. Reduction in muscle blood flow to a threshold for the muscle chemoreflex raises muscle metabolite concentration and reflexly raises BP by activating chemosensitive muscle afferents. In isometric exercise, sympathetic nervous activity (SNA) is increased mainly by muscle chemoreflex whereas central command raises heart rate (HR) and CO by vagal withdrawal. Cardiovascular control changes for dynamic exercise with large muscles. At exercise onset, central command increases HR by vagal withdrawal and "resets" the baroreflex to a higher BP. As long as vagal withdrawal can raise HR and CO rapidly so that BP rises quickly to its higher operating point, there is no mismatch between CO and vascular conductance (no BP error) and SNA does not increase. Increased SNA occurs at whatever HR (depending on species) exceeds the range of vagal withdrawal; the additional sympathetically mediated rise in CO needed to raise BP to its new operating point is slower and leads to a BP error. Sympathetic vasoconstriction is needed to complete the rise in BP. The baroreflex is essential for BP elevation at onset of exercise and for BP stabilization during mild exercise (subthreshold for chemoreflex), and it can oppose or magnify the chemoreflex when it is activated at higher work rates. Ultimately, when vascular conductance exceeds cardiac pumping capacity in the most severe exercise both chemoreflex and baroreflex must maintain BP by vasoconstricting active muscle.  相似文献   
93.
94.
95.
A troop of wild talapoins in Cameroon had 70 members including all age-sex classes. Observed between the birth season and the next mating season, it was habitually divided into subgroups. Subgroups most commonly observed were (1) adult and large juvenile males: (2) adult females with infants, small juveniles, and large juvenile females; (3) medium sized juveniles with a single adult male. Adult females and adult males were rarely sighted together and never seen to interact. From observations of caged groups, predictions are made about the changes in this organization which might be expected during the breeding season. A possible parallel with the ecologically similar squirrel monkey is suggested.  相似文献   
96.
97.
Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha-lipoic acid (alpha-LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha-LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies < or = 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of alpha-LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号