首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1838篇
  免费   215篇
  2021年   26篇
  2018年   15篇
  2016年   24篇
  2015年   43篇
  2014年   32篇
  2013年   50篇
  2012年   76篇
  2011年   69篇
  2010年   44篇
  2009年   42篇
  2008年   43篇
  2007年   59篇
  2006年   49篇
  2005年   51篇
  2004年   46篇
  2003年   75篇
  2002年   63篇
  2001年   58篇
  2000年   59篇
  1999年   46篇
  1997年   17篇
  1996年   20篇
  1995年   18篇
  1994年   18篇
  1993年   20篇
  1992年   46篇
  1991年   48篇
  1990年   60篇
  1989年   59篇
  1988年   54篇
  1987年   42篇
  1986年   44篇
  1985年   37篇
  1984年   34篇
  1983年   26篇
  1982年   21篇
  1981年   32篇
  1980年   24篇
  1979年   44篇
  1978年   30篇
  1977年   37篇
  1976年   32篇
  1975年   38篇
  1974年   18篇
  1973年   25篇
  1972年   27篇
  1971年   15篇
  1970年   15篇
  1967年   15篇
  1966年   18篇
排序方式: 共有2053条查询结果,搜索用时 15 毫秒
991.
The pattern of proteins produced by bacteria represents the physiological state of the organism as well as the environmental conditions encountered. Environmental stress induces the expression of several regulons encoding stress proteins. Extensive information about the proteins which constitute these regulons (or stimulons) and their control is available for very few bacteria, such as the Gram-positive Bacillus subtilis and the Gram-negative Escherichia coli (gamma-proteobacteria) and is minimal for all other bacteria. Agrobacterium tumefaciens is a Gram-negative plant pathogen of the alpha-proteobacteria, which constitutes the main tool for plant recombinant genetics. Our previous studies on the control of chaperone-coding operons indicated that A. tumefaciens has unique features and combines regulatory elements from both B. subtilis and E. coli. Therefore, we examined the patterns of proteins induced in A. tumefaciens by environmental changes using two-dimensional gel electrophoresis and dual-channel image analysis. Shifts to high temperature, oxidative and mild acid stresses stimulated the expression of 97 proteins. The results indicate that most of these stress-induced proteins (80/97) were specific to one stress stimulon. Only 10 proteins appear to belong to a general stress regulon.  相似文献   
992.
993.
994.
The galactose/N-acetylgalactosamine/N-acetylglucosamine 6-O-sulfotransferases (GSTs) are a family of Golgi-resident enzymes that transfer sulfate from 3'phosphoadenosine 5'phospho-sulfate to the 6-hydroxyl group of galactose, N-acetylgalactosamine, or N-acetylglucosamine in nascent glycoproteins. These sulfation modifications are functionally important in settings as diverse as cartilage structure and lymphocyte homing. To date six members of this gene family have been described in human and in mouse. We have determined the chromosomal localization of these genes as well as their genomic organization. While the broadly expressed enzymes implicated in proteoglycan biosynthesis are located on different chromosomes, the highly tissue specific enzymes GST-3 and 4 are encoded by genes located both in band q23.1--23.2 on chromosome 16. In the mouse, both genes reside in the syntenic region 8E1 on chromosome 8. This cross-species conserved clustering is suggestive of related functional roles for these genes. The human GST4 locus actually contains two highly similar open reading frames (ORF) that are 50 kb apart and encode two highly similar enzyme isoforms termed GST-4 alpha and GST-4 beta. All genes except GST0 (chondroitin 6-O-sulfotransferase) contain intron-less ORFs. With one exception these are fused directly to sequences encoding the 3' untranslated regions (UTR) of the respective mature mRNAs. The 5' UTRs of these mRNAs are usually encoded by a number of short exons 5' of the respective ORF. 5'UTRs of the same enzyme expressed in different cell types are sometimes derived from different exons located upstream of the ORF. The genomic organization of the GSTs resembles that of certain glycosyltransferase gene families.  相似文献   
995.
The effect of temperature on sodium channel function was examined in GH(3) cells, using the whole cell patch-clamp methodology. Specific parameters examined were current-voltage relationships, activation time, and inactivation time. For the temperature range studied, 23-37 degrees C, there was no change in the current-voltage relationship. A linear response to temperature was seen in the inactivation time constant, tau(h). The activation time constant, tau(m), was clearly nonlinear, with a sharp discontinuity at 28 degrees C. This nonlinearity was especially evident at lower membrane voltages. These findings are consistent with the hypothesis that membrane structural changes, which occur during the thermotropic phase transition, are capable of influencing the function of the intramembranous portion of the channel. Caution should, therefore, be exercised in extrapolating data on channel function obtained at room temperature to physiological temperatures.  相似文献   
996.
997.
In Escherichia coli ArsC catalyzes the reduction of arsenate to arsenite using GSH with glutaredoxin as electron donors. E. coli has three glutaredoxins: 1, 2, and 3, each with a classical -Cys-Pro-Tyr-Cys- active site. Glutaredoxin 2 is the major glutathione disulfide oxidoreductase in E. coli, but its function remains unknown. In this report glutaredoxin 2 is shown to be the most effective hydrogen donor for the reduction of arsenate by ArsC. Analysis of single or double cysteine-to-serine substitutions in the active site of the three glutaredoxins indicated that only the N-terminal cysteine residue is essential for activity. This suggests that, during the catalytic cycle, ArsC forms a mixed disulfide with GSH before being reduced by glutaredoxin to regenerate the active ArsC reductase.  相似文献   
998.
Growth and differentiation factor 7(GDF7), also later called as bone morphogenetic protein (BMP)12, is a new member of the BMP superfamily, which induces formation of tendon-like tissue formation in the ectopic implantation experiments. We examined the effect of BMP12 on proliferation and expression of phenotype-related genes in rat osteoblastic osteosarcoma ROS17/2.8 cells. BMP12 treatment enhanced proliferation of ROS17/2.8 cells within 3 days and this effect was observed at least up to day 6 of the treatment. The cell number was increased by about 50% on day 3 and about two-fold by day 6. These effects were observed at the dose range between 40 and 1,000 ng/ml. Treatment with BMP12 also enhanced alkaline phosphatase activity by about 50% in ROS17/2.8 cells within 24 h of the treatment. The effect peaked at 48 h and was still observed at 72 h. The enhancing effect of BMP12 on alkaline phosphatase was observed similarly at the doses ranging from 40 to 1,000 ng/ml. These data indicate that BMP12 has positive effects on proliferation and phenotypic expression of ROS 17/2.8 cells.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号