首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   40篇
  2021年   2篇
  2018年   2篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   9篇
  2009年   7篇
  2008年   7篇
  2007年   7篇
  2006年   13篇
  2005年   6篇
  2004年   8篇
  2003年   7篇
  2002年   1篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   4篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   7篇
  1992年   8篇
  1991年   2篇
  1990年   6篇
  1989年   14篇
  1988年   10篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   7篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
31.
Array-based comparative genomic hybridization has proven to be successful in the identification of genetic defects in disorders involving mental retardation. Here, we studied a patient with learning disabilities, retinal dystrophy, and short stature. The family history was suggestive of an X-linked contiguous gene syndrome. Hybridization of full-coverage X-chromosomal bacterial artificial chromosome arrays revealed a deletion of ~1 Mb in Xp11.3, which harbors RP2, SLC9A7, CHST7, and two hypothetical zinc-finger genes, ZNF673 and ZNF674. These genes were analyzed in 28 families with nonsyndromic X-linked mental retardation (XLMR) that show linkage to Xp11.3; the analysis revealed a nonsense mutation, p.E118X, in the coding sequence of ZNF674 in one family. This mutation is predicted to result in a truncated protein containing the Kruppel-associated box domains but lacking the zinc-finger domains, which are crucial for DNA binding. We characterized the complete ZNF674 gene structure and subsequently tested an additional 306 patients with XLMR for mutations by direct sequencing. Two amino acid substitutions, p.T343M and p.P412L, were identified that were not found in unaffected individuals. The proline at position 412 is conserved between species and is predicted by molecular modeling to reduce the DNA-binding properties of ZNF674. The p.T343M transition is probably a polymorphism, because the homologous ZNF674 gene in chimpanzee has a methionine at that position. ZNF674 belongs to a cluster of seven highly related zinc-finger genes in Xp11, two of which (ZNF41 and ZNF81) were implicated previously in XLMR. Identification of ZNF674 as the third XLMR gene in this cluster may indicate a common role for these zinc-finger genes that is crucial to human cognitive functioning.  相似文献   
32.
In case of nutritional stress, like carbon starvation, Escherichia coli cells abandon their exponential-growth state to enter a more resistant, non-growth state called stationary phase. This growth-phase transition is controlled by a genetic regulatory network integrating various environmental signals. Although E. coli is a paradigm of the bacterial world, it is little understood how its response to carbon starvation conditions emerges from the interactions between the different components of the regulatory network. Using a qualitative method that is able to overcome the current lack of quantitative data on kinetic parameters and molecular concentrations, we model the carbon starvation response network and simulate the response of E. coli cells to carbon deprivation. This allows us to identify essential features of the transition between exponential and stationary phase and to make new predictions on the qualitative system behavior following a carbon upshift.  相似文献   
33.
34.
We report on a large family in which a novel X-linked recessive mental retardation (XLMR) syndrome comprising macrocephaly and ciliary dysfunction co-segregates with a frameshift mutation in the OFD1 gene. Mutations of OFD1 have been associated with oral–facial–digital type 1 syndrome (OFD1S) that is characterized by X-chromosomal dominant inheritance and lethality in males. In contrast, the carrier females of our family were clinically inconspicuous, and the affected males suffered from severe mental retardation, recurrent respiratory tract infections and macrocephaly. All but one of the affected males died from respiratory problems in infancy; and impaired ciliary motility was confirmed in the index patient by high-speed video microscopy examination of nasal epithelium. This family broadens the phenotypic spectrum of OFD1 mutations in an unexpected way and sheds light on the complexity of the underlying disease mechanisms.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
35.
Many extracellular factors sensitize nociceptors. Often they act simultaneously and/or sequentially on nociceptive neurons. We investigated if stimulation of the protein kinase C epsilon (PKCε) signaling pathway influences the signaling of a subsequent sensitizing stimulus. Central in activation of PKCs is their transient translocation to cellular membranes. We found in cultured nociceptive neurons that only a first stimulation of the PKCε signaling pathway resulted in PKCε translocation. We identified a novel inhibitory cascade to branch off upstream of PKCε, but downstream of Epac via IP3‐induced calcium release. This signaling branch actively inhibited subsequent translocation and even attenuated ongoing translocation. A second ‘sensitizing’ stimulus was rerouted from the sensitizing to the inhibitory branch of the signaling cascade. Central for the rerouting was cytoplasmic calcium increase and CaMKII activation. Accordingly, in behavioral experiments, activation of calcium stores switched sensitizing substances into desensitizing substances in a CaMKII‐dependent manner. This mechanism was also observed by in vivo C‐fiber electrophysiology corroborating the peripheral location of the switch. Thus, we conclude that the net effect of signaling in nociceptors is defined by the context of the individual cell's signaling history.  相似文献   
36.
Comparative fluorescence in situ hybridization mapping using DNA libraries from flow-sorted mouse chromosomes and region-specific mouse BAC clones on rat chromosomes reveals chromosomal homologies between mouse (Mus musculus, MMU) and rat (Rattus norvegicus, RNO). Each of the MMU 2, 3, 4, 6, 7, 9, 12, 14, 15, 16, 18, 19, and X chromosomes paints only a single rat chromosome or chromosome segment and, thus, the chromosomes are largely conserved between the two species. In contrast, the painting probes for MMU chromosomes 1, 5, 8, 10, 11, 13, and 17 produce split hybridization signals in the rat, disclosing evolutionary chromosome rearrangements. Comparative mapping data delineate several large linkage groups on RNO 1, 2, 4, 7, and 14 that are conserved in human but diverged in the mouse. On the other hand, there are linkage groups in the mouse, i.e., on MMU 1, 8, 10, and 11, that are disrupted in both rat and human. In addition, we have hybridized probes for Nap2, p57, Igf2, H19, and Sh3d2c from MMU 7 to RNO 1q and found the orientation of the imprinting gene cluster and Sh3d2c to be the same in mouse and rat. Hybridization of rat genomic DNA shows blocks of (rat-specific) repetitive sequences in the pericentromeric region of RNO chromosomes 3-5, 7-13, and 20; on the short arms of RNO chromosomes 3, 12, and 13; and on the entire Y chromosome.  相似文献   
37.
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different vertebrate DMRT genes is not as clear. Evidence has accumulated for the involvement of DMRT1 in male sex determination and differentiation. DMRT2 (known as terra in zebrafish) seems to be a critical factor for somitogenesis. To contribute to a better understanding of the function of this important gene family, we have analyzed DMRT1, DMRT2, and DMRT3 from the genome model organism Fugu rubripes and the medakafish, a complementary model organism for genetics and functional studies. We found conservation of synteny of human chromosome 9 in F. rubripes and an identical gene cluster organization of the DMRTs in both fish. Although expression analysis and gene linkage mapping in medaka exclude a function for any of the three genes in the primary step of male sex determination, comparison of F. rubripes and human sequences uncovered three putative regulatory regions that might have a role in more downstream events of sex determination and human XY sex reversal.  相似文献   
38.
39.
Summary Steroid sulfatase (STS) activities in female fibroblast strains are significantly higher than in male strains, as determined by cleavage of dehydroepiandrosterone sulfate. The difference is probably not due to hormonal control of gene expression, but suggests that for this X-linked locus there is no gene dosage compensation.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号