首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   19篇
  2023年   5篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   13篇
  2017年   13篇
  2016年   13篇
  2015年   31篇
  2014年   24篇
  2013年   37篇
  2012年   36篇
  2011年   29篇
  2010年   16篇
  2009年   15篇
  2008年   23篇
  2007年   27篇
  2006年   23篇
  2005年   12篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有406条查询结果,搜索用时 406 毫秒
141.
The ongoing development of the Global Carbon Project (GCP) global methane (CH4) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000–2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions—China, Southeast Asia, USA, South Asia, and Brazil—account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4 yr?1 in 2008–2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.  相似文献   
142.
The ‘Moran effect’ predicts that dynamics of populations of a species are synchronized over similar distances as their environmental drivers. Strong population synchrony reduces species viability, but spatial heterogeneity in density dependence, the environment, or its ecological responses may decouple dynamics in space, preventing extinctions. How such heterogeneity buffers impacts of global change on large‐scale population dynamics is not well studied. Here, we show that spatially autocorrelated fluctuations in annual winter weather synchronize wild reindeer dynamics across high‐Arctic Svalbard, while, paradoxically, spatial variation in winter climate trends contribute to diverging local population trajectories. Warmer summers have improved the carrying capacity and apparently led to increased total reindeer abundance. However, fluctuations in population size seem mainly driven by negative effects of stochastic winter rain‐on‐snow (ROS) events causing icing, with strongest effects at high densities. Count data for 10 reindeer populations 8–324 km apart suggested that density‐dependent ROS effects contributed to synchrony in population dynamics, mainly through spatially autocorrelated mortality. By comparing one coastal and one ‘continental’ reindeer population over four decades, we show that locally contrasting abundance trends can arise from spatial differences in climate change and responses to weather. The coastal population experienced a larger increase in ROS, and a stronger density‐dependent ROS effect on population growth rates, than the continental population. In contrast, the latter experienced stronger summer warming and showed the strongest positive response to summer temperatures. Accordingly, contrasting net effects of a recent climate regime shift—with increased ROS and harsher winters, yet higher summer temperatures and improved carrying capacity—led to negative and positive abundance trends in the coastal and continental population respectively. Thus, synchronized population fluctuations by climatic drivers can be buffered by spatial heterogeneity in the same drivers, as well as in the ecological responses, averaging out climate change effects at larger spatial scales.  相似文献   
143.
Nitrous oxide (N2O) emissions from inland waters remain a major source of uncertainty in global greenhouse gas budgets. N2O emissions are typically estimated using emission factors (EFs), defined as the proportion of the terrestrial nitrogen (N) load to a water body that is emitted as N2O to the atmosphere. The Intergovernmental Panel on Climate Change (IPCC) has proposed EFs of 0.25% and 0.75%, though studies have suggested that both these values are either too high or too low. In this work, we develop a mechanistic modeling approach to explicitly predict N2O production and emissions via nitrification and denitrification in rivers, reservoirs and estuaries. In particular, we introduce a water residence time dependence, which kinetically limits the extent of denitrification and nitrification in water bodies. We revise existing spatially explicit estimates of N loads to inland waters to predict both lumped watershed and half‐degree grid cell emissions and EFs worldwide, as well as the proportions of these emissions that originate from denitrification and nitrification. We estimate global inland water N2O emissions of 10.6–19.8 Gmol N year?1 (148–277 Gg N year?1), with reservoirs producing most N2O per unit area. Our results indicate that IPCC EFs are likely overestimated by up to an order of magnitude, and that achieving the magnitude of the IPCC's EFs is kinetically improbable in most river systems. Denitrification represents the major pathway of N2O production in river systems, whereas nitrification dominates production in reservoirs and estuaries.  相似文献   
144.
145.
146.
Single nucleotide polymorphisms (SNPs) in loci 1p13 and 9p21 have previously been found to be associated with incident coronary heart disease (CHD). This study aimed to investigate whether these SNPs show associations with fatal CHD in a population-based cohort study after adjustment for socioeconomic- and lifestyle-related CHD risk factors not commonly included in genetic association studies. Using the population-based Cohort of Norway (CONOR), a nested case-cohort study was set up and DNA from 2,953 subjects (829 cases and 2,124 non-cases) were genotyped. The association with fatal CHD was estimated for four SNPs, three from locus 1p13 and one from locus 9p21. Multivariable Cox regression was used to estimate unstratified and gender-stratified hazard ratios while adjusting for major CHD risk factors. The associations between three SNPs from locus 1p13 and non-HDL cholesterol levels were also estimated. Men homozygous for the risk alleles on rs1333049 (9p21) and rs14000 (1p13) were found to have significantly increased hazard ratios in crude and adjusted models, and the hazard ratios remained statistically significant when both genders were analyzed together. Adjustment for additional socioeconomic- and lifestyle-related CHD risk factors influenced the association estimates only slightly. No significant associations were observed between the other two SNPs in loci 1p13 (rs599839 and rs646776) and CHD mortality in either gender. Both rs599839 and rs646776 showed significant, gradual increases in non-HDL cholesterol levels with increasing number of risk alleles. This study confirms the association between 9p21 (rs1333049) and fatal CHD in a Norwegian population-based cohort. The effect was not influenced by several socioeconomic- and lifestyle-related risk factors. Our results show that 1p13 (rs14000) may also be associated with fatal CHD. SNPs at 1p13 (rs599839 and rs646776) were associated with non-HDL cholesterol levels.  相似文献   
147.
148.
Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant potential clearly differ between salmonid and cyprinid species.  相似文献   
149.
The availability of both the Xenopus tropicalis genome and the soon to be released Xenopus laevis genome provides a solid foundation for Xenopus developmental biologists. The Xenopus community has presently amassed expression data for ~2,300 genes in the form of published images collected in the Xenbase, the principal Xenopus research database. A few of these genes have been examined in both X. tropicalis and X. laevis and the cross-species comparison has been proven invaluable for studying gene function. A recently published work has yielded developmental expression profiles for the majority of Xenopus genes across fourteen developmental stages spanning the blastula, gastrula, neurula, and the tail-bud. While this data was originally queried for global evolutionary and developmental principles, here we demonstrate its general use for gene-level analyses. In particular, we present the accessibility of this dataset through Xenbase and describe biases in the characterized genes in terms of sequence and expression conservation across the two species. We further indicate the advantage of examining coexpression for gene function discovery relating to developmental processes conserved across species. We suggest that the integration of additional large-scale datasets--comprising diverse functional data--into Xenbase promises to provide a strong foundation for researchers in elucidating biological processes including the gene regulatory programs encoding development.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号