首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   23篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   19篇
  2013年   16篇
  2012年   28篇
  2011年   18篇
  2010年   16篇
  2009年   16篇
  2008年   19篇
  2007年   14篇
  2006年   13篇
  2005年   12篇
  2004年   18篇
  2003年   8篇
  2002年   9篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有296条查询结果,搜索用时 281 毫秒
11.
The formation of biofilms in the endotracheal tubes (ETTs) of intubated patients on mechanical ventilation is associated with a greater risk of ventilator‐associated pneumonia and death. New technologies are needed to detect and monitor ETTs in vivo for the presence of these biofilms. Longitudinal OCT imaging was performed in mechanically ventilated subjects at 24‐hour intervals until extubation to detect the formation and temporal changes of in vivo ETT biofilms. OCT‐derived attenuation coefficient images were used to differentiate between mucus and biofilm. Extubated ETTs were examined with optical and electron microscopy, and all imaging results were correlated with standard‐of‐care clinical test reports. OCT and attenuation coefficient images from four subjects were positive for ETT biofilms and were negative for two subjects. The processed and stained extubated ETTs and clinical reports confirmed the presence/absence of biofilms in all subjects. Our findings confirm that OCT can detect and differentiate between biofilm‐positive and biofilm‐negative groups (P < 10?5). OCT image‐based features may serve as biomarkers for direct in vivo detection of ETT biofilms and help drive investigation of new management strategies to reduce the incidence of VAP.   相似文献   
12.
International Microbiology - In this study, we aimed to develop a novel, sustained release varnish (SRV) for voice prostheses (VP) releasing chlorhexidine (CHX), for the prevention of biofilm...  相似文献   
13.
14.
Semaphorins as Mediators of Neuronal Apoptosis   总被引:6,自引:0,他引:6  
Shrinkage and collapse of the neuritic network are often observed during the process of neuronal apoptosis. However, the molecular and biochemical basis for the axonal damage associated with neuronal cell death is still unclear. We present evidence for the involvement of axon guidance molecules with repulsive cues in neuronal cell death. Using the differential display approach, an up-regulation of collapsin response mediator protein was detected in sympathetic neurons undergoing dopamine-induced apoptosis. A synchronized induction of mRNA of the secreted collapsin-1 and the intracellular collapsin response mediator protein that preceded commitment of neurons to apoptosis was detected. Antibodies directed against a conserved collapsin-derived peptide provided marked and prolonged protection of several neuronal cell types from dopamine-induced apoptosis. Moreover, neuronal apoptosis was inhibited by antibodies against neuropilin-1, a putative component of the semaphorin III/collapsin-1 receptor. Induction of neuronal apoptosis was also caused by exposure of neurons to semaphorin III-alkaline phosphatase secreted from 293EBNA cells. Anti-collapsin-1 antibodies were effective in blocking the semaphorin III-induced death process. We therefore suggest that, before their death, apoptosis-destined neurons may produce and secrete destructive axon guidance molecules that can affect their neighboring cells and thus transfer a "death signal" across specific and susceptible neuronal populations.  相似文献   
15.
SCF complexes are multi-subunit ubiquitin ligases that, in concert with the E1 and E2 ubiquitination enzymes, catalyze the ubiquination of specific target proteins. Only three yeast SCFs have been reconstituted and characterized to date; each of these ubiquitinates its target protein with the E2 Cdc34. We have reconstituted and purified 1 known and 12 novel yeast SCF complexes, and explored the ability of these complexes to function with 5 different purified E2 enzymes; Ubc1, Cdc34, Ubc4, Ubc8 and Ubc11. We have found that the ubiquitination of Sic1 by the reconstituted SCF(Cdc4) complex was specifically catalyzed by two of the five E2 enzymes tested in vitro; Cdc34 and Ubc4. We also show that at least eight of the purified SCF complexes clearly ubiquitinated their F-box proteins in vitro, lending support for a regulatory mechanism in which F-box proteins catalyze their own destruction. The autoubiquitination of each F-box was in some cases catalyzed only by Cdc34, and in other cases preferentially catalyzed by Ubc4. Ubc4 thus interacts with multiple SCFs in vitro, and the interactions among SCF and E2 components of the ubiquitination machinery may allow further diversification of the roles of SCFs in vivo.  相似文献   
16.
Previous investigations showed that a high molecular mass, non-dialyzable material (NDM) from cranberries inhibits the adhesion of a number of bacterial species and prevents the co-aggregation of many oral bacterial pairs. In the present study we determined the effect of mouthwash supplemented with NDM on oral hygiene. Following 6 weeks of daily usage of cranberry-containing mouthwash by an experimental group (n = 29), we found that salivary mutans streptococci count as well as the total bacterial count were reduced significantly (ANOVA, P < 0.01) compared with those of the control (n = 30) using placebo mouthwash. No change in the plaque and gingival indices was observed. In vitro, the cranberry constituent inhibited the adhesion of Streptococcus sobrinus to saliva-coated hydroxyapatite. The data suggest that the ability to reduce mutans streptococci counts in vivo is due to the anti-adhesion activity of the cranberry constituent.  相似文献   
17.
The p53 protein is kept labile under normal conditions. This regulation is governed largely by its major negative regulator, Mdm2. In response to stress however, p53 accumulates and becomes activated. For this to occur, the inhibitory effects of Mdm2 have to be neutralized. Here we investigated the role of the promyelocytic leukemia protein (PML) in the activation of p53 in response to stress. We found that PML is critical for the accumulation of p53 in response to DNA damage under physiological conditions. PML protects p53 from Mdm2-mediated ubiquitination and degradation, and from inhibition of apoptosis. PML neutralizes the inhibitory effects of Mdm2 by prolonging the stress-induced phosphorylation of p53 on serine 20, a site of the checkpoint kinase 2 (Chk2). PML recruits Chk2 and p53 into the PML nuclear bodies and enhances p53/Chk2 interaction. Our results provide a novel mechanistic explanation for the cooperation between PML and p53 in response to DNA damage.  相似文献   
18.
Accumulation of misfolded proteins as insoluble aggregates occurs in several neurodegenerative diseases. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), alpha-synuclein (alpha S) accumulates in insoluble inclusions. To identify soluble alpha S oligomers that precede insoluble aggregates, we probed the cytosols of mesencephalic neuronal (MES) cells, normal and alpha S-transgenic mouse brains, and normal, PD, and DLB human brains. All contained highly soluble oligomers of alpha S whose detection was enhanced by delipidation. Exposure of living MES neurons to polyunsaturated fatty acids (PUFAs) increased alpha S oligomer levels, whereas saturated FAs decreased them. PUFAs directly promoted oligomerization of recombinant alphaS. Transgenic mice accumulated soluble oligomers with age. PD and DLB brains had elevated amounts of the soluble, lipid-dependent oligomers. We conclude that alpha S interacts with PUFAs in vivo to promote the formation of highly soluble oligomers that precede the insoluble alpha S aggregates associated with neurodegeneration.  相似文献   
19.
20.
Fetal alcohol spectrum disorder (FASD) is the combination of developmental, morphological, and neurological defects that result from exposing human embryos to ethanol (EtOH). Numerous embryonic structures are affected, leading to a complex viable phenotype affecting among others, the anterior/posterior axis, head, and eye formation. Recent studies have provided evidence suggesting that EtOH teratogenesis is mediated in part through a reduction in retinoic acid (RA) levels, targeting mainly the embryonic organizer (Spemann's organizer) and its subsequent functions. EtOH-treated Xenopus embryos were subjected to an analysis of gene expression patterns. Analysis of organizer-specific genes revealed a transient delay in the invagination of gsc- and chordin-positive cells that eventually reach their normal rostro-caudal position. Dorsal midline genes show defects along the rostro-caudal axis, lacking either their rostral (Xbra and Xnot2) or caudal (FoxA4b and Shh) expression domains. Head-specific markers like Otx2, en2, and Shh show abnormal expression patterns. Otx2 exhibits a reduction in expression levels, while en2 becomes restricted along the dorsal/ventral axis. During neurula stages, Shh becomes up-regulated in the rostral region and it is expressed in an abnormal pattern. These results and histological analysis suggest the existence of malformations in the brain region including a lack of the normal fore brain ventricle. An increase in the size of both the prechordal plate and the notochord was observed, while the spinal cord is narrower. The reduction in head and eye size was accompanied by changes in the eye markers, Pax6 and Tbx3. Our results provide evidence for the early molecular changes induced by EtOH exposure during embryogenesis, and may explain some of the structural changes that are part of the EtOH teratogenic phenotype also in FASD individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号