首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3026篇
  免费   225篇
  国内免费   1篇
  2023年   21篇
  2022年   16篇
  2021年   61篇
  2020年   40篇
  2019年   46篇
  2018年   71篇
  2017年   67篇
  2016年   102篇
  2015年   139篇
  2014年   187篇
  2013年   200篇
  2012年   251篇
  2011年   254篇
  2010年   150篇
  2009年   127篇
  2008年   196篇
  2007年   179篇
  2006年   180篇
  2005年   155篇
  2004年   116篇
  2003年   110篇
  2002年   115篇
  2001年   40篇
  2000年   39篇
  1999年   30篇
  1998年   21篇
  1997年   32篇
  1996年   20篇
  1995年   13篇
  1994年   14篇
  1993年   13篇
  1992年   24篇
  1991年   10篇
  1990年   19篇
  1989年   13篇
  1988年   13篇
  1987年   14篇
  1986年   9篇
  1985年   13篇
  1984年   15篇
  1983年   10篇
  1982年   8篇
  1981年   6篇
  1980年   10篇
  1979年   7篇
  1974年   5篇
  1972年   5篇
  1971年   5篇
  1967年   7篇
  1966年   5篇
排序方式: 共有3252条查询结果,搜索用时 31 毫秒
991.
Multiple myeloma (MM) is an incurable plasma cell (PC) malignancy characterized by the accumulation of monoclonal PCs in the bone marrow. For deeper understanding of the molecular mechanisms involved in the development of this disease, the influence of microenvironment, or the prediction of response of tumor PCs to anti-MM treatment, it is possible to use modern technologies for genomic and proteomic analyses. Due to progress in instrumentation, one of the main tools of proteomic analysis is mass spectrometry in combination with chosen separation techniques. This review will provide a short survey of the most commonly used proteomic techniques and show examples of their applications in MM proteome studies.  相似文献   
992.
993.
994.
Developing high‐quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini‐reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth‐atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub‐disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large‐scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions.  相似文献   
995.
996.
Wang H  Qian C  Roman M 《Biomacromolecules》2011,12(10):3708-3714
This study examines the effects of pH and salt concentration on the formation and properties of chitosan-cellulose nanocrystal (CNC) polyelectrolyte-macroion complexes (PMCs). The components' pK values, determined by potentiometric titration, were 6.40 for chitosan and 2.46 for the CNCs. The turbidity of PMC particle suspensions was measured as a function of chitosan-CNC ratio, pH, and salt concentration. The maximum turbidity values in titrations of a chitosan solution with a CNC suspension and vice versa occurred at charge ratios of 0.47 ± 0.11 (SO(3)(-)/NH(3)(+)) and 1.16 ± 0.06 (NH(3)(+)/SO(3)(-)), respectively. A pH increase caused a turbidity decrease due to shrinking of the PMC particles upon changes in their components' degrees of ionization. An increase in salt concentration caused a decrease in turbidity due to charge-screening-related shrinking of the PMC particles. The effects of pH and salt concentration on particle size were confirmed by scanning electron microscopy.  相似文献   
997.
998.

Background

Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded.

Methods and Findings

We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%–36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91–0.97) was similar to that expected (0.96, 0.93–0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74–0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15–0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders.

Conclusions

Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions. Please see later in the article for the Editors'' Summary  相似文献   
999.
PKCα is a key mediator of the neuronal differentiation controlled by NGF and ATP. However, its downstream signaling pathways remain to be elucidated. To identify the signaling partners of PKCα, we analyzed proteins coimmunoprecipitated with this enzyme in PC12 cells differentiated with NGF and ATP and compared them with those obtained with NGF alone or growing media. Mass spectrometry analysis (LC-MS/MS) identified plectin, peripherin, filamin A, fascin, and β-actin as potential interacting proteins. The colocalization of PKCα and its interacting proteins increased when PC12 cells were differentiated with NGF and ATP. Peripherin and plectin organization and the cortical remodeling of β-actin were dramatically affected when PKCα was down-regulated, suggesting that all three proteins might be functional targets of ATP-dependent PKCα signaling. Taken together, these data demonstrate that PKCα is essential for controlling the neuronal development induced by NGF and ATP and interacts with the cytoskeletal components at two levels: assembly of the intermediate filament peripherin and organization of cortical actin.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号