首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3519篇
  免费   238篇
  2024年   3篇
  2023年   36篇
  2022年   34篇
  2021年   131篇
  2020年   100篇
  2019年   131篇
  2018年   138篇
  2017年   114篇
  2016年   197篇
  2015年   244篇
  2014年   233篇
  2013年   265篇
  2012年   304篇
  2011年   297篇
  2010年   211篇
  2009年   165篇
  2008年   194篇
  2007年   165篇
  2006年   169篇
  2005年   134篇
  2004年   119篇
  2003年   99篇
  2002年   69篇
  2001年   32篇
  2000年   21篇
  1999年   16篇
  1998年   23篇
  1997年   4篇
  1996年   6篇
  1995年   11篇
  1994年   11篇
  1993年   6篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   4篇
  1975年   4篇
  1970年   1篇
  1969年   1篇
排序方式: 共有3757条查询结果,搜索用时 93 毫秒
91.
The severe acute respiratory syndrome coronavirus (SARS-CoV) envelope spike (S) glycoprotein is responsible for the fusion between the membranes of the virus and the target cell. In the case of the S2 domain of protein S, it has been found a highly hydrophobic and interfacial domain flanked by the heptad repeat 1 and 2 regions; significantly, different peptides pertaining to this domain have shown a significant leakage effect and an important plaque formation inhibition, which, similarly to HIV-1 gp41, support the role of this region in the fusion process. Therefore, we have carried out a study of the binding and interaction with model membranes of a peptide corresponding to segment 1073–1095 of the SARS-CoV S glycoprotein, peptide SARSL in the presence of different membrane model systems, as well as the structural changes taking place in both the lipid and the peptide induced by the binding of the peptide to the membrane. Our results show that SARSL strongly partitions into phospholipid membranes and organizes differently in lipid environments, displaying membrane activity modulated by the lipid composition of the membrane. These data would support its role in SARS-CoV mediated membrane fusion and suggest that the region where this peptide resides could be involved in the merging of the viral and target cell membranes.  相似文献   
92.
The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest–savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils.  相似文献   
93.
A growing body of evidence indicates that creatine (Cr) exerts beneficial effects on a variety of pathologies where energy metabolism and oxidative stress play an etiological role. However, the benefits of Cr treatment for epileptics are still shrouded in controversy. In the present study, we found that acute Cr treatment (300 mg/kg, p.o.) prevented the increase in electroencephalographic wave amplitude typically elicited by PTZ (30, 45 or 60 mg/kg, i.p.). Cr treatment also increased the latency periods of first myoclonic jerks, lengthened the latency periods of the generalized tonic–clonic seizures and reduced the time spent in the generalized tonic–clonic seizures induced by PTZ (60 mg/kg). Administration of PTZ (all doses) decreased Na+, K+-ATPase activity as well as adenosine triphosphate (ATP) and adenosine diphosphate levels in the cerebral cortex, but Cr treatment prevented these effects. Cr administration also prevented increases in xanthine oxidase activity, adenosine monophosphate levels, adenosine levels, inosine levels and uric acid levels that normally occur after PTZ treatment (60 mg/kg, i.p.). We also showed that Cr treatment increased the total Cr (Cr + PCr) content, creatine kinase activity and the mitochondrial membrane potential (ΔΨ) in the cerebral cortex. In addition, Cr prevented PTZ-induced mitochondrial dysfunction characterized by decreasing ΔΨ, increasing thiobarbituric acid-reactive substance levels and increasing protein carbonylation. These experimental findings reinforce the idea that mitochondrial dysfunction plays a critical role in models of epileptic seizures and suggest that buffering brain energy levels through Cr treatment may be a promising therapeutic approach for the treatment of this neurological disease.  相似文献   
94.
Most empirical and theoretical papers on prey–predator interactions are for animals with long-range detection, animals that can detect and react to predators long before these touch the prey. Heavy-bodied and chemically defended harvestmen (Arachnida, Opiliones) are an exception to this general pattern and rely on contact to detect arthropod predators. We examined the interactions between the Brazilian wandering spider Ctenus ornatus with harvestmen (Mischonyx cuspidatus) or control prey (Gryllus sp. and M. cuspidatus immature, both with soft integuments). Considering a prey–predator system in which fleeing from or reacting to a predator at a distance is not possible, we predicted both a high survival value of near-range defense mechanisms and that mortality would be higher in the absence of such defense mechanisms. We also expected the predator to behave differently when interacting with harvestmen or with a control prey without such defense mechanisms. Our results from laboratory experiments partially matched our predictions: First of all, histological sections showed that the integument of adult harvestmen is thicker than that of immature harvestmen and that of crickets. Adult harvestmen were less preyed upon than the control prey; the heavy armature increases the survival rate but the secretions from the scent glands do not. The predator did behave differently when attacking harvestmen compared to crickets. Despite the large size difference between predator and harvestmen, the protection provided by the armature allowed some of the harvestmen to survive encounters without pre-contact detection, thus greatly reducing the reliance on long-range detection to survive encounters with predators. Harvestmen call for theoretical and empirical work on prey–predator interactions that take into account the possibility that prey may not detect the predator before contact is established.  相似文献   
95.

Purpose

In life cycle assessment (LCA), literature suggests accounting for land as a resource either by what it delivers (e.g., biomass content) or the time and space needed to produce biomass (land occupation), in order to avoid double-counting. This paper proposes and implements a new framework to calculate exergy-based spatial explicit characterization factors (CF) for land as a resource, which deals with both biomass and area occupied on the global scale.

Methods

We created a schematic overview of the Earth, dividing it into two systems (human-made and natural), making it possible to account for what is actually extracted from nature, i.e., the biomass content was set as the elementary flow to be accounted at natural systems and the land occupation (through the potential natural net primary production) was set as the elementary flow at human-made systems. Through exergy, we were able to create CF for land resources for these two different systems. The relevancy of the new CF was tested for a number of biobased products.

Results and discussion

Site-generic CF were created for land as a resource for natural systems providing goods to humans, and site-generic and site-dependent CF (at grid, region, country, and continent level) were created for land as a resource within human-made systems. This framework differed from other methods in the sense of accounting for both land occupation and biomass content but without double-counting. It is set operationally for LCA and able to account for land resources with more completeness, allowing spatial differentiation. When site-dependent CF were considered for land resources, the overall resource consumption of certain products increased up to 77 % in comparison with site-generic CF-based data.

Conclusions

This paper clearly distinguished the origin of the resource (natural or human-made systems), allowing consistent accounting for land as a resource. Site-dependent CF for human-made systems allowed spatial differentiation, which was not considered in other resource accounting life cycle impact assessment methods.  相似文献   
96.

Background

Most research on Ocean Acidification (OA) has largely focused on the process of calcification and the physiological trade-offs employed by calcifying organisms to support the building of calcium carbonate structures. However, there is growing evidence that OA can also impact upon other key biological processes such as survival, growth and behaviour. On wave-swept rocky shores the ability of gastropods to self-right after dislodgement, and rapidly return to normal orientation, reduces the risk of predation.

Methodology/Principal Findings

The impacts of OA on this self-righting behaviour and other important parameters such as growth, survival, shell dissolution and shell deposition in Concholepas concholepas (loco) were investigated under contrasting pCO2 levels. Although no impacts of OA on either growth or net shell calcification were found, the results did show that OA can significantly affect self-righting behaviour during the early ontogeny of this species with significantly faster righting times recorded for individuals of C. concholepas reared under increased average pCO2 concentrations (± SE) (716±12 and 1036±14 µatm CO2) compared to those reared at concentrations equivalent to those presently found in the surface ocean (388±8 µatm CO2). When loco were also exposed to the predatory crab Acanthocyclus hassleri, righting times were again increased by exposure to elevated CO2, although self-righting times were generally twice as fast as those observed in the absence of the crab.

Conclusions and Significance

These results suggest that self-righting in the early ontogeny of C. concholepas will be positively affected by pCO2 levels expected by the end of the 21st century and beginning of the next one. However, as the rate of self-righting is an adaptive trait evolved to reduce lethal predatory attacks, our result also suggest that OA may disrupt prey responses to predators in nature.  相似文献   
97.
Whole genome protein-protein association networks are not random and their topological properties stem from genome evolution mechanisms. In fact, more connected, but less clustered proteins are related to genes that, in general, present more paralogs as compared to other genes, indicating frequent previous gene duplication episodes. On the other hand, genes related to conserved biological functions present few or no paralogs and yield proteins that are highly connected and clustered. These general network characteristics must have an evolutionary explanation. Considering data from STRING database, we present here experimental evidence that, more than not being scale free, protein degree distributions of organisms present an increased probability for high degree nodes. Furthermore, based on this experimental evidence, we propose a simulation model for genome evolution, where genes in a network are either acquired de novo using a preferential attachment rule, or duplicated with a probability that linearly grows with gene degree and decreases with its clustering coefficient. For the first time a model yields results that simultaneously describe different topological distributions. Also, this model correctly predicts that, to produce protein-protein association networks with number of links and number of nodes in the observed range for Eukaryotes, it is necessary 90% of gene duplication and 10% of de novo gene acquisition. This scenario implies a universal mechanism for genome evolution.  相似文献   
98.
The apparent stiffness tensor is an important mechanical parameter for characterizing trabecular bone. Previous studies have modeled this parameter as a function of mechanical properties of the tissue, bone density, and a second-order fabric tensor, which encodes both anisotropy and orientation of trabecular bone. Although these models yield strong correlations between observed and predicted stiffness tensors, there is still space for reducing accuracy errors. In this paper, we propose a model that uses fourth-order instead of second-order fabric tensors. First, the totally symmetric part of the stiffness tensor is assumed proportional to the fourth-order fabric tensor in the logarithmic scale. Second, the asymmetric part of the stiffness tensor is derived from relationships among components of the harmonic tensor decomposition of the stiffness tensor. The mean intercept length (MIL), generalized MIL (GMIL), and fourth-order global structure tensor were computed from images acquired through microcomputed tomography of 264 specimens of the femur. The predicted tensors were compared to the stiffness tensors computed by using the micro-finite element method (\(\upmu \)FE), which was considered as the gold standard, yielding strong correlations (\(R^2\) above 0.962). The GMIL tensor yielded the best results among the tested fabric tensors. The Frobenius error, geodesic error, and the error of the norm were reduced by applying the proposed model by 3.75, 0.07, and 3.16 %, respectively, compared to the model by Zysset and Curnier (Mech Mater 21(4):243–250, 1995) with the second-order MIL tensor. From the results, fourth-order fabric tensors are a good alternative to the more expensive \(\upmu \)FE stiffness predictions.  相似文献   
99.
100.
The genus Kogia, which comprises only two extant species, Kogia sima and Kogia breviceps, represents one of the least known groups of cetaceans in the global ocean. In some coastal regions, however, stranding events of these species have been relatively common over the last decades. Stranding provides the opportunity to investigate the biology of these cetaceans and to explore the epidemiological aspects associated with the mortality of the organisms found on the beach. A number of disturbances (including pelagic fisheries, chemical pollution, boat strikes, and noise pollution) have been confirmed to pose a particular threat to the Kogia species. However, no study has yet investigated potential relationships between environmental conditions and stranding events. Here we analyse how a collection of environmental, physical, and biological variables, such as wind, sea surface temperature (SST), water depth, and chlorophyll-a, correlate to Kogia stranding events along the Brazilian coast. The results of our statistical analyses suggest that K. sima is more likely found in warm tropical waters, which provide an explanation for the high frequency of stranding in northeastern Brazilian coast. In contrast, K. breviceps appears to have a preference for temperate and productive waters. Wind speed results to be also an important factor for predicting Kogia strandings in Brazilian coast. Additionally, literature information in combination with our own data and analyses of stomach contents confirms that oceanic cephalopods constitute the primary nutritional source of both Kogia species. By using the available information as a qualitative proxy for habitat preference and feeding ecology, our study provides a novel and comprehensive assessment of Kogia stranding data in relation to environmental conditions along the Brazilian coast.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号