首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161692篇
  免费   5002篇
  国内免费   818篇
  2023年   526篇
  2022年   468篇
  2021年   1199篇
  2020年   1012篇
  2019年   1058篇
  2018年   13465篇
  2017年   12116篇
  2016年   9831篇
  2015年   4224篇
  2014年   3963篇
  2013年   5223篇
  2012年   9757篇
  2011年   17410篇
  2010年   14695篇
  2009年   10418篇
  2008年   13332篇
  2007年   14690篇
  2006年   3754篇
  2005年   3497篇
  2004年   3840篇
  2003年   3588篇
  2002年   3144篇
  2001年   1897篇
  2000年   1757篇
  1999年   1270篇
  1998年   555篇
  1997年   422篇
  1996年   412篇
  1995年   383篇
  1994年   310篇
  1993年   306篇
  1992年   651篇
  1991年   592篇
  1990年   497篇
  1989年   481篇
  1988年   489篇
  1987年   432篇
  1986年   423篇
  1985年   394篇
  1984年   399篇
  1983年   286篇
  1982年   248篇
  1980年   195篇
  1979年   244篇
  1978年   236篇
  1975年   228篇
  1974年   235篇
  1973年   245篇
  1972年   437篇
  1971年   442篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
61.
Evergreen boreal plant species express high variability in their leaf traits. It remains controversial whether this within-species variability is constrained to the same leaf trait relationships as has been observed across species. We sampled leaves of three boreal evergreen woody species along a latitudinal gradient (from 57o56′N to 69o55′N). Leaf longevity (LL) of Pinus sylvestris L. and Vaccinium vitis-idaea L. correlated negatively with mean annual air temperature (MAT), whereas the LL of Ledum palustre L. was not affected by MAT. V. vitis-idaea and L. palustre had a negative relationship between leaf mass per area (LMA) and MAT. In P. sylvestris, the LMA–MAT relationship was positive. A negative correlation between LL and LMA was significant only for P. sylvestris. Leaf nitrogen concentration was positively related to leaf phosphorus concentration in all three species. Leaf potassium concentration was related to nitrogen concentration only in L. palustre, and to phosphorus concentration in P. sylvestris and L. palustre. Our results demonstrate that although within the studied species the variation in some of the leaf traits may have the same degree as interspecific variation, there is no such intercorrelation of leaf traits within the studied species as has been observed across species.  相似文献   
62.
63.
The preconditioning response conferred by a mild uncoupling of the mitochondrial membrane potential (Δψm) has been attributed to altered reactive oxygen species (ROS) production and mitochondrial Ca2 + uptake within the cells. Here we have explored if altered cellular energetics in response to a mild mitochondrial uncoupling stimulus may also contribute to the protection. The addition of 100 nM FCCP for 30 min to cerebellar granule neurons (CGNs) induced a transient depolarization of the Δψm, that was sufficient to significantly reduce CGN vulnerability to the excitotoxic stimulus, glutamate. On investigation, the mild mitochondrial ‘uncoupling’ stimulus resulted in a significant increase in the plasma membrane levels of the glucose transporter isoform 3, with a hyperpolarisation of Δψm and increased cellular ATP levels also evident following the washout of FCCP. Furthermore, the phosphorylation state of AMP-activated protein kinase (AMPK) (Thr 172) was increased within 5 min of the uncoupling stimulus and elevated up to 1 h after washout. Significantly, the physiological changes and protection evident after the mild uncoupling stimulus were lost in CGNs when AMPK activity was inhibited. This study identifies an additional mechanism through which protection is mediated upon mild mitochondrial uncoupling: it implicates increased AMPK signalling and an adaptive shift in energy metabolism as mediators of the preconditioning response associated with FCCP-induced mild mitochondrial uncoupling.  相似文献   
64.

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson’s disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.

  相似文献   
65.
66.
The retinoblastoma (pRB) family of proteins includes three proteins known to suppress growth of mammalian cells. Previously we had found that growth suppression by two of these proteins, p107 and p130, could result from the inhibition of associated cyclin-dependent kinases (cdks). One important unresolved issue, however, is the mechanism through which inhibition occurs. Here we present in vivo and in vitro evidence to suggest that p107 is a bona fide inhibitor of both cyclin A-cdk2 and cyclin E-cdk2 that exhibits an inhibitory constant (Ki) comparable to that of the cdk inhibitor p21/WAF1. In contrast, pRB is unable to inhibit cdks. Further reminiscent of p21, a second cyclin-binding site was mapped to the amino-terminal portions of p107 and p130. This amino-terminal domain is capable of inhibiting cyclin-cdk2 complexes, although it is not a potent substrate for these kinases. In contrast, a carboxy-terminal fragment of p107 that contains the previously identified cyclin-binding domain serves as an excellent kinase substrate although it is unable to inhibit either kinase. Clustered point mutations suggest that the amino-terminal domain is functionally important for cyclin binding and growth suppression. Moreover, peptides spanning the cyclin-binding region are capable of interfering with p107 binding to cyclin-cdk2 complexes and kinase inhibition. Our ability to distinguish between p107 and p130 as inhibitors rather than simple substrates suggests that these proteins may represent true inhibitors of cdks.  相似文献   
67.
In this study, we detailed in a time-dependent manner the trafficking, the recycling, and the structural fate of Brucella abortus LPS in murine peritoneal macrophages by immunofluorescence, ELISA, and biochemical analyses. The intracellular pathway of B. abortus LPS, a nonclassical endotoxin, was investigated both in vivo after LPS injection in the peritoneal cavity of mice and in vitro after LPS incubation with macrophages. We also followed LPS trafficking after infection of macrophages with B. abortus strain 19. After binding to the cell surface and internalization, Brucella LPS is routed from early endosomes to lysosomes with unusual slow kinetics. It accumulates there for at least 24 h. Later, LPS leaves lysosomes and reaches the macrophage cell surface. This recycling pathway is also observed for LPS released by Brucella S19 following in vitro infection. Indeed, by 72 h postinfection, bacteria are degraded by macrophages and LPS is located inside lysosomes dispersed at the cell periphery. From 72 h onward, LPS is gradually detected at the plasma membrane. In each case, the LPS present at the cell surface is found in large clusters with the O-chain facing the extracellular medium. Both the antigenicity and heterogenicity of the O-chain moiety are preserved during the intracellular trafficking. We demonstrate that LPS is not cleared by macrophages either in vitro or in vivo after 3 mo, exposing its immunogenic moiety toward the extracellular medium.  相似文献   
68.
Lactate esters are widely used as food additives, perfume materials, medicine additives, and personal care products. The objective of this work was to investigate the effect of a series of lactate esters as penetration enhancers on the in vitro skin permeation of four drugs with different physicochemical properties, including ibuprofen, salicylic acid, dexamethasone and 5-fluorouracil. The saturated donor solutions of the evaluated drugs in propylene glycol were used in order to keep a constant driving force with maximum thermodynamic activity. The permeability coefficient (K p), skin concentration of drugs (SC), and lag time (T), as well as the enhancement ratios for K p and SC were recorded. All results indicated that lactate esters can exert a significant influence on the transdermal delivery of the model drugs and there is a structure-activity relationship between the tested lactate esters and their enhancement effects. The results also suggested that the lactate esters with the chain length of fatty alcohol moieties of 10–12 are more effective enhancers. Furthermore, the enhancement effect of lactate esters increases with a decrease of the drug lipophilicity, which suggests that they may be more efficient at enhancing the penetration of hydrophilic drugs than lipophilic drugs. The influence of the concentration of lactate esters was evaluated and the optimal concentration is in the range of 5∼10 wt.%. In sum, lactate esters as a penetration enhancer for some drugs are of interest for transdermal administration when the safety of penetration enhancers is a prime consideration.  相似文献   
69.
70.
The study of the structural and functional properties of key components of polar marine ecosystems has received increased attention in order to better understand the ecological consequences of future sea temperature rise and seasonal ice retraction. Owing to this purpose, during the ATOS-Arctic cruise, held in July 2007 in the framework of the 2007–2008 International Polar Year, we studied the respiratory carbon demand of mesozooplankton as well as their contribution to the regeneration of inorganic nitrogen and phosphorus (NH4-N and PO4-P) via excretion. The studied area comprised several stations along a latitudinal gradient in the East Greenland current, plus a network of stations NW of the Svalbard islands. The specific respiratory carbon losses and phosphorus (PO4-P) excretion rates were similar or slightly higher than some reports for Arctic mesozooplankton, but the nitrogen (NH4-N) excretion rates were higher by a factor of 3 when compared with previous data sets. The mesozooplankton respiratory losses were equivalent to 23% of primary production, and at turn zooplankton contributed by excretion to more than 50% of the N and P required by phytoplankton. Although C:N, C:P and N:P metabolic atomic quotients almost coincided with the average Redfield’s stoichiometric ratios, the low C:N values when compared to previous reports suggested a predominance of protein-related metabolic substrates. The potential consequences of changes observed in the C:N, N:P and C:P metabolic ratios of mesozooplankton for Arctic marine ecosystems are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号