首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2934篇
  免费   178篇
  2023年   10篇
  2022年   9篇
  2021年   53篇
  2020年   35篇
  2019年   75篇
  2018年   69篇
  2017年   53篇
  2016年   89篇
  2015年   164篇
  2014年   140篇
  2013年   208篇
  2012年   244篇
  2011年   209篇
  2010年   136篇
  2009年   101篇
  2008年   173篇
  2007年   180篇
  2006年   170篇
  2005年   162篇
  2004年   159篇
  2003年   132篇
  2002年   152篇
  2001年   24篇
  2000年   16篇
  1999年   29篇
  1998年   21篇
  1997年   20篇
  1996年   20篇
  1995年   19篇
  1994年   16篇
  1993年   16篇
  1992年   11篇
  1991年   19篇
  1990年   11篇
  1989年   9篇
  1988年   10篇
  1987年   12篇
  1986年   6篇
  1985年   6篇
  1984年   12篇
  1983年   10篇
  1982年   21篇
  1981年   9篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1977年   10篇
  1976年   5篇
  1975年   4篇
  1971年   4篇
排序方式: 共有3112条查询结果,搜索用时 453 毫秒
21.
Summary Endoproteinase(s) was isolated from a freeze-dried powder of larvae of Ostrinia nubilalis using reverse micellar solutions. The inhibition of proteinase was studied in reverse micelles with commercial Bowman-Birk soybean trypsin inhibitor and three trypsin inhibitors recently isolated from ripe cruciferous seeds.  相似文献   
22.
Split hand/split foot (SHFD) is a human developmental defect characterized by missing digits, fusion of remaining digits, and a deep median cleft in the hands and feet. Cytogenetic studies of deletions and translocations associated with this disorder have indicated that an autosomal dominant split hand/split foot locus (gene SHFD1) maps to 7q21-q22. To characterize the SHFD1 locus, somatic cell hybrid lines were constructed from cytogenetically abnormal individuals with SHFD. Molecular analysis resulted in the localization of 93 DNA markers to one of 10 intervals surrounding the SHFD1 locus. The translocation breakpoints in four SHFD patients were encompassed by the smallest region of overlap among the SHFD-associated deletions. The order of DNA markers in the SHFD1 critical region has been defined as PON–D7S812–SHFD1–D7S811–ASNS. One DNA marker, D7S811, detected altered restriction enzyme fragments in three patients with translocations when examined by pulsed-field gel electro-phoresis (PFGE). These data map SHFD1, a gene that is crucial for human limb differentiation, to a small interval in the q21.3-q22.1 region of human chromosome 7.  相似文献   
23.
Biological Trace Element Research - The results of a research in progress at the Istituto di Fisica Generale Applicata—University of Milan—on natural and anthropogenic elements'...  相似文献   
24.
Summary Different species of truffle were studied in order to identify species-specific markers. The isolation of two Tuber magnatum Pico markers is reported. One of these could be used as a probe in dot blot hybridization, allowing the development of a rapid test able to identify Tuber magnatum species.  相似文献   
25.
In the midgut of Spodoptera frugiperda larvae, subcellular fractionation data suggest that aminopeptidase and part of amylase, carboxypeptidase A, dipeptidase, and trypsin are bound to the microvillar membranes; that major amounts of soluble dipeptidase, cellobiase, and maltase are trapped in the cell glycocalyx; and finally that soluble carboxypeptidase, amylase, and trypsin occur in intracellular vesicles. Most luminal acetylglucosaminidase is soluble and restricted to the ectoperitrophic contents. Aminopeptidase occurs in minor amounts bound to membranes both in the ectoperitrophic contents and incorporated in the peritrophic membrane. Amylase, carboxypeptidase A, and trypsin are found in minor amounts in the ectoperitrophic contents (both soluble and membrane-bound) and in major amounts in the peritrophic membrane with contents. Part of the activities recovered in the last mentioned contents corresponds to enzyme molecules incorporated in the peritrophic membrane. The results suggest that initial digestion is carried out in major amounts by enzymes in the endoperitrophic space and, in minor amounts, by enzymes immobilized in the peritrophic membrane. Intermediate and final digestion occur at the ectoperitrophic space or at the surface of midgut cells. The results also lend support to the hypothesis that amylase and trypsin are derived from membrane-bound forms, are released in soluble form by a microapocrine mechanism, and are partly incorporated into the peritrophic membrane. © 1994 Wiley-Liss, Inc.  相似文献   
26.
27.
28.
Due to the several side effects of synthetic pesticides, including environmental pollution, threats to human health, and the development of pest resistance to insecticides, the use of alternative healthy, available and efficient agents in pest management strategies is necessary. Recently, the use of essential oil obtained from aromatic plants has shown significant potential for insect pest management. For this reason, the essential oil isolated from seeds of Thapsia garganica L. was investigated for the first time for its chemical profile, and its toxicity and repellency effects against Tribolium castaneum adults. Qualitative and quantitative analyses of the chemical composition by gas chromatography coupled to mass spectrometry (GC/MS) revealed the presence of 18 organic volatiles representing 96.8 % of the total constituents. The main compounds were 1,4-dimethylazulene (51.3 %) followed by methyl palmitate (8.2 %), methyl linoleate (6.2 %) and costol (5.1 %). Concerning the repellent effect, results revealed that SEO (Seed Essential Oil) was very repellent towards T. castaneum adults, with 100 % repellency after 2 h of exposure. Furthermore, the essential oil exhibited remarkable contact toxicity against T. castaneum (93.3 % of mortality) at the concentration of 10 % (v/v). The median lethal dose (LD50) of the topical application of the seed essential oil was 4.4 %. These encouraging outcomes suggested that the essential oil from T. garganica seeds could be considered a potent natural alternative to residual persistent and toxic insecticides.  相似文献   
29.
Saccharomyces cerevisiae Gpi3p is the UDP-GlcNAc-binding and presumed catalytic subunit of the enzyme that forms GlcNAc-phosphatidylinositol in glycosylphosphatidylinositol biosynthesis. It is an essential protein with an EX7E motif that is conserved in four families of retaining glycosyltransferases. All Gpi3ps contain a cysteine residue four residues C-terminal to EX7E. To test their importance for Gpi3p function in vivo, Glu289 and 297 in the EX7E motif of S. cerevisiae Gpi3p, as well as Cys301, were altered by site-specific mutagenesis, and the mutant proteins tested for their ability to complement nonviable GPI3-deleted haploids. Gpi3p-C301A supported growth but membranes from C301A-expressing cells had low in vitro N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) synthetic activity. Haploids harboring Gpi3p-E289A proved viable, although slow growing but Gpi3-E297A did not support growth. The E289D and E297D mutants both supported growth at 25 degrees C, but, whereas the E289D strain grew at 37 degrees C, the E297D mutant did not. Membranes from E289D mutants had severely reduced in vitro GlcNAc-PI synthetic activity and E297D membranes had none. The mutation of the first Glu in the EX7E motif of Schizosaccharomyces pombe Gpi3p (Glu277) to Asp complemented the lethal null mutation in gpi3+ and supported growth at 37 degrees C, but the E285D mutant was nonviable. Our results suggest that the second Glu residue of the EX7E motif in Gpi3p is of greater importance than the first for function in vivo. Further, our findings do not support previous suggestions that the first Glu of an EX7E protein is the nucleophile and that Cys301 has an important role in UDP-GlcNAc binding by Gpi3ps.  相似文献   
30.
 The chemical shifts of several 13C nuclei positioned α to the haems in oxidised cyanide complexes of horseradish peroxidase and lignin peroxidase are reported and analysed in terms of π molecular orbitals with perturbed D4h symmetry. The additional contributions to the paramagnetic shifts of 13C nuclei in the vinyl groups which arise from conjugation with the porphyrin π molecular orbitals are discussed, and an empirical correction factor is derived from a number of other compounds which contain haems b. The orbital mixing parameter which is obtained from the analysis of the experimental 13C shifts is compared with the orientation of the axial histidine ligands in X-ray structures of related compounds and found to be close to the orientation of the normal to the histidine ring. Comparison with the magnetic axes determined by fitting the dipolar shifts of several protons which have been assigned previously also shows close agreement with the negative in-plane rotation of the magnetic y axis. It is therefore possible to obtain the approximate orientation of the magnetic axes from 13C resonances of the haem and hence to determine the dipolar shifts at any point in space with respect to the haem by using these axes together with the anisotropy of the magnetic susceptibility, which can be obtained by extrapolation from EPR g values. Excellent agreement is found between dipolar shifts obtained by fitting an empirical magnetic susceptibility tensor and predictions based on 13C NMR and EPR in the case of lignin peroxidase. The agreement is less good in the case of horseradish peroxidase, in which the empirical magnetic z axis appears to be tilted significantly away from the haem normal, though this may be due in part to the lack of accurate atomic coordinates. It is concluded that useful estimates of the magnetic susceptibility tensor may be obtained from 13C NMR and EPR studies even in large mammalian peroxidases for which no structural models are available. Received: 27 December 1995 / Accepted: 17 April 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号