首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有44条查询结果,搜索用时 187 毫秒
11.
In order to evaluate the mode of action of galanin (GAL) on the neuroeffector mechanism of peripheral sympathetic nerve fibers, the effects of this peptide were tested on the electrical stimulated and the unstimulated preparations of the isolated rat vas deferens in the presence of 10(-7) M atropine. The contractile responses, which were mediated predominantly by activation of postganglionic noradrenergic nerve fibers were dose-dependently potentiated by GAL in concentrations ranging from 1 to 50 nM. The facilitatory action induced by GAL in high concentrations (greater than 10 nM) usually returned to the control level at 2-3 min and were tachyphylactic. The potentiating action of GAL was not modified by pretreatment with 10(-7) M propranolol. Contractions produced by exogenous norepinephrine (NE) in the unstimulated preparations were not affected by pretreatment with low concentrations (less than 5 nM) of GAL. On the other hand, the contractions were dose-dependently potentiated 1 min after pretreatment with higher concentrations (greater than 10 nM) of GAL, which recovered 15 min after constant flow washout. Contractions developed by exogenous 5-hydroxytryptamine were not affected, or slightly inhibited, by GAL (1-50 nM). In some preparations without electrical stimulation, high concentrations of GAL caused a slight contraction, which was not blocked by pretreatment with 10(-6) M phentolamine and 10(-6) M tetrodotoxin. These results suggest that GAL receptors exist presynaptically in the rat vas deferens and that stimulation of the receptors by GAL potentiates the release of NE from the nerve terminals during postganglionic sympathetic nerve stimulation. Other mechanisms for GAL action, such as influence on neuronal uptake and catecholamine metabolism, cannot be ruled out.  相似文献   
12.
13.
Molecular hydrogen has been reported to be effective for a variety of disorders and its effects have been ascribed to the reduction of oxidative stress. However, we have recently demonstrated that hydrogen inhibits type I allergy through modulating intracellular signal transduction. In the present study, we examined the hydrogen effects on lipopolysaccharide/interferon γ LPS/IFNγ-induced nitric oxide (NO) production in murine macrophage RAW264 cells. Treatment with hydrogen reduced LPS/IFNγ-induced NO release, which was associated with a diminished induction of inducible isoform of nitric oxide synthase (iNOS). Hydrogen treatment inhibited LPS/IFNγ-induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) and its downstream signaling molecules, p38 MAP kinase and JNK, as well as IκBα, but did not affect activation of NADPH oxidase and production of reactive oxygen species (ROS). As ROS is an upstream activator of ASK1, inhibition of ASK1 by hydrogen without suppressing ROS implies that a potential target molecule of hydrogen should be located at the receptor or immediately downstream of it. These results suggested a role for molecular hydrogen as a signal modulator. Finally, oral intake of hydrogen-rich water alleviated anti-type II collagen antibody-induced arthritis in mice, a model for human rheumatoid arthritis. Taken together, our studies indicate that hydrogen inhibits LPS/IFNγ-induced NO production through modulation of signal transduction in macrophages and ameliorates inflammatory arthritis in mice, providing the molecular basis for hydrogen effects on inflammation and a functional interaction between two gaseous signaling molecules, NO and molecular hydrogen.  相似文献   
14.
The condensation of acetylsalicylchloride with the morpholine enamine of cyclohexanone in the presence of triethylamine gave an adduct which was converted into tetrahydroxanthone (X) by treating with aqueous pyridine containing piperidine. The reaction was applied to condensation of the pyrrolidine enamine (VI) of 6,7-dimethoxychroman-3-one with acetyl tubaic acid chloride to afford dehydrorotenone (II).  相似文献   
15.
PHF2 belongs to a class of α-ketoglutarate-Fe2+-dependent dioxygenases. PHF2 harbors a plant homeodomain (PHD) and a Jumonji domain. PHF2, via its PHD, binds Lys4-trimethylated histone 3 in submicromolar affinity and has been reported to have the demethylase activity of monomethylated lysine 9 of histone 3 in vivo. However, we did not detect demethylase activity for PHF2 Jumonji domain (with and without its linked PHD) in the context of histone peptides. We determined the crystal structures of PHF2 Jumonji domain in the absence and presence of additional exogenous metal ions. When Fe2+ or Ni2+ was added at a high concentration (50 mM) and allowed to soak in the preformed crystals, Fe2+ or Ni2+ was bound by six ligands in an octahedral coordination. The side chains of H249 and D251 and the two oxygen atoms of N-oxalylglycine (an analog of α-ketoglutarate) provide four coordinations in the equatorial plane, while the hydroxyl oxygen atom of Y321 and one water molecule provide the two axial coordinations as the fifth and sixth ligands, respectively. The metal binding site in PHF2 closely resembles the Fe2+ sites in other Jumonji domains examined, with one important difference—a tyrosine (Y321 of PHF2) replaces histidine as the fifth ligand. However, neither Y321H mutation nor high metal concentration renders PHF2 an active demethylase on histone peptides. Wild type and Y321H mutant bind Ni2+ with an approximately equal affinity of 50 μM. We propose that there must be other regulatory factors required for the enzymatic activity of PHF2 in vivo or that perhaps PHF2 acts on non-histone substrates. Furthermore, PHF2 shares significant sequence homology throughout the entire region, including the above-mentioned tyrosine at the corresponding iron-binding position, with that of Schizosaccharomyces pombe Epe1, which plays an essential role in heterochromatin function but has no known enzymatic activity.  相似文献   
16.
Microcirculation of the sheath of the rat sciatic nerve fiber was investigated by using an intravital microscope, and changes in the diameter of the epineurial arterioles in response to highly oxygenated Krebs-bicarbonate solution were evaluated. Superfusion of low-oxygen (0%) Krebs-bicarbonate solution (LKS) onto rat sciatic nerves did not affect changes in the diameter of the arterioles. Nifedipine, a Ca(2+)-channel blocker, caused a dose-dependent dilation of the epineurial arterioles in LKS. In contrast, superfusion of high-oxygen (21%) Krebs-bicarbonate solution (HKS) onto rat sciatic nerves significantly constricted the epineurial arterioles in a time-dependent manner. The HKS-induced constriction of the epineurial arterioles was significantly reduced by treatment with 120 U/ml superoxide dismutase (SOD) alone or 5,000 U/ml catalase alone. In the presence of 120 U/ml SOD plus 5,000 U/ml catalase, 10(-4) M tempol, 10(-6) M diphenyleneiodium, 2 x 10(-4) M apocynin, or 10(-6) M allopurinol, the HKS-induced constriction of the epineurial arterioles completely disappeared. These results suggest that superfusion of highly oxygenated solution onto rat sciatic nerves constricts the epineurial arterioles through reactive oxygen species (ROS), including superoxide and hydrogen peroxide, and that production of superoxide involves a NADPH oxidase- or xanthine oxidase-dependent pathway. In conclusion, ROS play significant roles in the regulation of microcirculation of rat sciatic nerves in vivo.  相似文献   
17.
Regional differences in responses of isolated monkey arteries and veins to atrial natriuretic peptide were investigated by recording isometric tension. Addition of atrial natriuretic peptide (4 X 10(-12) to 4 X 10(-8) M) produced a concentration-dependent relaxation in isolated monkey arteries and veins. No significant difference was observed between the responses to rat and human atrial natriuretic peptides. A marked heterogeneity in responses to rat atrial natriuretic peptide, however, was observed in arterial preparations. The decreasing order of the response was as follows: renal greater than pulmonary greater than femoral = mesenteric greater than coronary greater than middle cerebral greater than basilar arteries. A heterogeneity in the relaxation produced by atrial natriuretic peptide was also observed in monkey veins. The decreasing order of the response was as follows: pulmonary greater than mesenteric = portal greater than femoral greater than renal = inferior caval veins. On the other hand, 10(-5) M sodium nitroprusside caused a maximal relaxation in all monkey arteries and veins used. In the middle cerebral, basilar, and coronary arteries, the relaxant effects of rat atrial natriuretic peptide on KCl-induced contraction were significantly smaller than those on the preparations contracted by an agonist such as prostaglandin F2 alpha. These results suggest that there exist profound regional vasorelaxant selectivities of atrial natriuretic peptide in isolated monkey arteries and veins.  相似文献   
18.
The improved reconstitution of the Mono Q-III fraction, a Cl(-)-translocating ATPase, isolated from Acetabularia acetabulum (Ikeda et al. (1990) Biochemistry 29, 2057-2065) into liposomes rendered transport properties of this enzyme clear. The liposomes were prepared by the reversed-phase method using egg lecithin and cholesterol in a molar ratio of 2:1 and the purified ATPase was incorporated into the liposomes by a dialysis for 3 h. About 80% of the ATPase was incorporated into the liposomes. The weight ratio of the enzyme to lipid was 1:400-600. A sigmoid curve was obtained when the Cl(-)-transport activity of the enzyme was plotted against Cl- concentration. Hill's plot afforded a half-substrate concentration [S]0.5 of 45 mM and a Hill's coefficient n of 2.33. Effects of Br- and F- on the Cl(-)-transport were also examined in the reconstituted system, both halide ions decreased the 36Cl- efflux significantly. These kinetic data are in good agreement with the electrophysiological data presented by Tittor et al. ((1983) J. Membr. Biol. 75, 129-139).  相似文献   
19.
Spontaneous contractions were elicited by the vibration of small amplitude (microvibration) imposed upon the quiescent strips prepared from the ureter and portal vein of dogs. An acceleration of the existing rhythm in the spontaneously contracting strips was also brought about by microvibration. Frequencies and amplitudes of microvibration ranged from 1 to 90 Hz and from 50 to 150 mum, respectively. Imposed cyclic strains were less than 1% at their maximum. Up to the amplitude of 150 mum, the greater the amplitude, the faster the induced rhythm. Stepwise increase of the frequencies up to 30 Hz brought about a gradual acceleration of rhythmicity. At frequencies of above 30 Hz, no appreciable frequency-dependent differences were observable among the responses induced. Local adrenergic mechanism proved to have nothing to do with these effects.  相似文献   
20.
We studied the physiological role of flow through pulmonary arterioles in CO2 gas exchange. We established human pulmonary arteriolar endothelial cells (HPAoEC). The cells demonstrated marked immunocytochemical staining of PECAM‐1, VEGF R2, ACE‐1, and CA type IV on their cell surface. Ten seconds shear stress stimulation caused the co‐release of H+ and ATP via the activation of F1/FO ATP synthase on the HPAoEC. F1/FO ATP synthase was immunocytochemically observed on the cell surface of non‐permeabilized HPAoEC. In the shear stress‐loaded HPAoEC culture media supernatant, ATPase activity increased in a time‐dependent manner. The HPAoEC were strongly stained for NTPDase 1, which partially co‐localized with purinergic P2Y1. The purinergic P2Y1 receptor agonist UTP (10?6 M) significantly potentiated the shear stress‐induced increase in ATPase activity in the culture medium supernatant. Ten seconds shear stress stimulation also produced stress strength‐dependent CO2 gas excretion from the HPAoEC, which was significantly reduced by the inhibition of F1/FO ATP synthase or CA IV on the endothelial cell (EC) surface. In conclusion, we have proposed a new concept of CO2 exchange in the human lung, flow‐mediated F1/FO ATP synthase‐dependent H+ secretion, resulting in the facilitation of a dehydration reaction involving in plasma and the excretion of CO2 gas from arteriolar ECs. J. Cell. Physiol. 227: 2059–2068, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号