首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   7篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   8篇
  2014年   15篇
  2013年   4篇
  2012年   13篇
  2011年   15篇
  2010年   12篇
  2009年   6篇
  2008年   9篇
  2007年   11篇
  2006年   21篇
  2005年   20篇
  2004年   11篇
  2003年   12篇
  2002年   9篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1993年   2篇
  1991年   1篇
排序方式: 共有188条查询结果,搜索用时 31 毫秒
31.
Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii. This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability.Light sustains virtually all life on Earth through the process of photosynthesis. However, light can be very harmful for oxygenic photosynthetic organisms, as excess absorption can lead to the production of reactive oxygen species. In order to survive and grow, these organisms have developed various photoacclimation mechanisms operating on different time scales that protect the cell from photodamage. In the green alga Chlamydomonas reinhardtii, these mechanisms vary from negative phototaxis and multicomponent nonphotochemical quenching (NPQ) to a number of physiological and biochemical changes (Erickson et al., 2015). C. reinhardtii cells are around 10 μm in diameter, and a large part of their total volume is occupied by a single horseshoe-shaped chloroplast (Sager and Palade, 1957). The photosynthetic machinery responsible for the light reactions is located in thylakoid membranes and contains four major components: PSII, cytochrome b6f, PSI, and ATP synthase. Both photosystems bind chlorophyll (Chl) and carotenoid (Car) and are composed of a core and several outer antennae pigment-protein complexes, the main function of which is light harvesting and its conversion into chemical energy. The PSII core is composed of D1, D2, CP43, and CP47 pigment-protein complexes and several smaller subunits, the number of which varies between organisms (Shi et al., 2012). The outer antenna contains the light-harvesting complex II (LHCII), which in C. reinhardtii is encoded by nine LHCBM genes, and the minor antennae CP26 and CP29 (Nield et al., 2000; Teramoto et al., 2001; Natali and Croce, 2015). These complexes are assembled together to form PSII-LHCII supercomplexes (Tokutsu et al., 2012; Drop et al., 2014). The PSI core is composed of a PSAA-PSAB heterodimer and a number of smaller subunits (Jensen et al., 2007), and in C. reinhardtii the LHCI antenna consists of nine LHCA proteins (Mozzo et al., 2010) that are associated with the core to form the PSI-LHCI complex (Stauber et al., 2009; Drop et al., 2011).The composition and organization of the thylakoid membrane is light dependent. The gene expression of different LHCs has been reported to be affected by light acclimation (Teramoto et al., 2002; Durnford et al., 2003; Yamano et al., 2008) and to be NAB1 regulated (Mussgnug et al., 2005). It has been observed that long-term high-light exposure of C. reinhardtii cells leads to a 50% decrease of Chl content (Neale and Melis, 1986; Bonente et al., 2012) and to changes in Chl-to-Car ratio (Niyogi et al., 1997a; Baroli et al., 2003; Bonente et al., 2012), suggesting reduction of the antenna size (Neale and Melis, 1986), although, in a more recent report (Bonente et al., 2012), it was concluded that the antenna size is not modulated by light in this alga. Recently, a dependence of the antenna components on the carbon availability also was reported. It was shown that, when cells grown in acetate are shifted from high to low CO2 concentration, the functional antenna size of PSII decreases and a down-regulation of LHCBM6/8 occurs (Berger et al., 2014).In the short term, the main response to high light is the dissipation of energy absorbed in excess heat in a process called qE, or energy-dependent quenching, which is the fastest component of NPQ. In land plants, the main player in this process is the protein PsbS (Li et al., 2002, 2004), while in C. reinhardtii, the process is centered around LHCSR1 and LHCSR3 (Peers et al., 2009; Dinc et al., 2016). LHCSR3, the most studied of the two, is a pigment-protein complex that is expressed within 1 h of high-light exposure (Allorent et al., 2013) in combination with CO2 limitation (Yamano et al., 2008; Maruyama et al., 2014). The qE onset is triggered by lumen acidification sensed by LHCSR3/1 (Bonente et al., 2011; Liguori et al., 2013; Tokutsu and Minagawa, 2013; Dinc et al., 2016).Cars are well known to be involved in photoprotection. They quench triplet Chl and scavenge singlet oxygen (1O2; Frank and Cogdell, 1996). In C. reinhardtii, the antioxidant role of xanthophylls is well illustrated by the mutant npq1 lor1 lacking lutein and zeaxanthin (Niyogi et al., 1997b). This mutant is deficient in qE, but compared with other qE-deficient mutants like npq4 (Peers et al., 2009) and npq5 (Elrad et al., 2002), which are LHCSR3 and LHCBM1 knockouts, respectively, it is extremely light sensitive, due to the absence of quenching of triplet Chl and 1O2 by zeaxanthin and lutein.Aquatic oxygenic photosynthetic organisms meet several challenges in CO2 fixation (Moroney and Ynalvez, 2007). First, the diffusion of CO2 in water is 10,000 times slower than in air. Second, the CO2-fixing enzyme Rubisco is not selective for CO2 and also binds oxygen, resulting in the process of photorespiration. Third, the form of inorganic carbon depends on the pH (i.e. in alkaline pH, it is HCO3, while in acidic pH, it is CO2; Beardall, 1981; Gehl et al., 1987). This diminishes even further the availability of CO2 in the cell. In order to overcome these CO2 fixation barriers, algae have developed carbon-concentrating mechanisms (CCMs; Moroney and Ynalvez, 2007). The essence of these processes lies in the active pumping of inorganic carbon in the cell via a number of transporters that concentrate it in the pyrenoid, a ball-like structure containing Rubisco, Rubisco activase, and intrapyrenoid thylakoids and surrounded by a starch sheath. In the pyrenoid, HCO3 is converted to CO2 by CARBONIC ANHYDRASE3 (CAH3; Blanco-Rivero et al., 2012; Sinetova et al., 2012) and then fixed by Rubisco in the Calvin-Benson-Bassham cycle. CAH3 also is suggested to provide HCO3 in the proximity of the oxygen-evolving complex, where it may function as a proton carrier, removing H+ from water splitting to avoid photoinhibition (Villarejo et al., 2002; Shutova et al., 2008).C. reinhardtii also can grow mixotrophically using alternative organic carbon sources present in its environment. For example, it can take up acetate, which is then incorporated into the citric cycle, producing reducing equivalents and CO2 (Johnson and Alric, 2012), and into the glyoxylate cycle, producing malate (Lauersen et al., 2016). In the presence of acetate, it has been reported that CO2 uptake and oxygen evolution were decreased by half under saturating CO2 and light intensities without affecting PSII efficiency, respiration, and cell growth (Heifetz et al., 2000). In addition, reactions of the oxidative pentose phosphate and glycolysis pathways, inactive under phototrophic conditions, show substantial flux under mixotrophic conditions (Chapman et al., 2015). Furthermore, acetate can replace PSII-associated HCO3, reducing 1O2 formation and, therefore, acting as a photoprotector during high-light acclimation (Roach et al., 2013).In short, high-light acclimation is a complex, multicomponent process that happens on different time scales. Furthermore, it is embedded in the overall metabolic network and is potentially influenced by different nutrients and metabolic states. A thorough understanding of this process and its regulation is crucial for fundamental research and applications. To determine if different carbon supply conditions trigger different light acclimation strategies and photoprotective responses, we systematically studied C. reinhardtii cells grown in mixotrophic, photoautotrophic, and high-CO2 photoautotrophic conditions in different light intensities.We show that C. reinhardtii cells use different strategies to acclimate to high light depending on the carbon availability and trophic status. These results underline the strong connection between metabolism and light acclimation responses and reconcile the data from various reports. Furthermore, our study demonstrates how, in a dynamic system such as C. reinhardtii, a single change in growth conditions has large effects at multiple levels.  相似文献   
32.
Alkylresorcinols (ARs) are phenolic lipids present at high concentrations in the outer parts of rye and wheat kernels and have been proposed as biomarkers for intake of whole grain and bran products of these cereals. AR are absorbed in the small intestine and after hepatic metabolism two major metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA), are excreted in urine either as such or as conjugates. Urine samples from nine individuals were incubated with different enzymes to assess type and extent of conjugates. In comparison with DHBA, which was mostly found in the free form, the less polar DHPPA was conjugated to a greater extent and the major conjugates were glucuronides. In this method, urine samples were hydrolyzed using β-glucuronidase from Helix pomatia and syringic acid was used as internal standard. Samples, silylated with BSTFA, were analyzed by GC–MS utilizing a BP-5 fused silica capillary column and single ion monitoring of molecular ions (m/z 370 [DHBA], m/z 398 [DHPPA]). Recoveries of DHBA and DHPPA were estimated to be 94% and 93%, respectively. The average intra-assay/inter-assay coefficients of variation were 4.9/5.7% for DHBA and 7.6/9.3% for DHPPA.  相似文献   
33.
Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3–4 Å is sufficient to prevent ion permeation through the pore.  相似文献   
34.
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.  相似文献   
35.
Lead is potentially toxic to all organisms including plants. Many physiological studies suggest that plants have developed various mechanisms to contend with heavy metals, however the molecular mechanisms remain unclear. We studied maize plants in which lead was introduced into detached leaves through the transpiration stream. The photochemical efficiency of PSII, measured as an Fv/Fm ratio, in the maize leaves treated with Pb was only 10% lower than in control leaves. The PSII activity was not affected by Pb ions in mesophyll thylakoids, whereas in bundle sheath it was reduced. Protein phosphorylation in mesophyll and bundle sheath thylakoids was analyzed using mass spectrometry and protein blotting before and after lead treatment. Both methods clearly demonstrated increase in phosphorylation of the PSII proteins upon treatment with Pb2+, however, the extent of D1, D2 and CP43 phosphorylation in the mesophyll chloroplasts was clearly higher than in bundle sheath cells. We found that in the presence of Pb ions there was no detectable dephosphorylation of the strongly phosphorylated D1 and PsbH proteins of PSII complex in darkness or under far red light. These results suggest that Pb2+ stimulates phosphorylation of PSII core proteins, which can affect stability of the PSII complexes and the rate of D1 protein degradation. Increased phosphorylation of the PSII core proteins induced by Pb ions may be a crucial protection mechanism stabilizing optimal composition of the PSII complexes under metal stress conditions. Our results show that acclimation to Pb ions was achieved in both types of maize chloroplasts in the same way. However, these processes are obviously more complex because of different metabolic status in mesophyll and bundle sheath chloroplasts.  相似文献   
36.
Both environmental and genetic factors can dramatically affect reproductive performance in mice. In this study we have focused on the identification of genetic regions, quantitative trait loci (QTL), which affect the breeding capacity of female mice. We have identified polymorphic microsatellite markers for the mouse strains used and performed a genomewide scan on 237 females from a gene-segregating backcross between a high breeder and a relatively poor breeder. The high-breeder mouse strain we used is the inbred NFR/N mouse (MHC haplotype H-2q), which has extraordinary good breeding properties. The moderate breeder chosen for F(1) and N2 progeny was B10.Q, which is a genetically well-characterized MHC-congenic mouse of the H-2q haplotype. Each of the 237 females of the N2 generation was allowed to mate twice with MHC-congenic B10.RIII (H-2r) males and twice with B10.Q males. A predetermined number of phenotypes related to reproductive performance were recorded, and these included litter size, neonatal growth, and pregnancy rate. Loci controlling litter size were detected on chromosomes 1 (Fecq3) and 9 (Fecq4). The neonatal growth phenotype was affected by Fecq3 and a locus on chromosome 9 (Neogq1). On chromosome 11 two loci affecting the pregnancy rate (Pregq1 and Pregq2) were identified. Furthermore, on chromosomes 13 and 17 we found loci (Pregq3 and Pregq4) influencing the outcome of allogeneic pregnancy (allogeneic by means of MHC disparity between mother and fetuses). A locus on chromosome 1 affecting maternal body weight was also identified and has been denoted Bwq7. It is well known that reproductive performance is polygenically controlled, and the identification of the major loci in this complex process opens the possibility of investigating the natural genetic control of reproduction.  相似文献   
37.
Eae5 in rats was originally identified in two F(2) intercrosses, (DA x BN) and (E3 x DA), displaying linkage to CNS inflammation and disease severity in experimental autoimmune encephalomyelitis (EAE), respectively. This region overlaps with an arthritis locus, Pia4, which was also identified in the (E3 x DA) cross. Two congenic strains, BN.DA-Eae5 and BN.DA-Eae5.R1, encompassing the previously described Eae5 and Pia4, were established. DA alleles within the chromosome 12 fragment conferred an increase in disease susceptibility as well as increased inflammation and demyelination in the CNS as compared with BN alleles. To enable a more precise fine mapping of EAE regulatory genes, we used a rat advanced intercross line between the EAE-susceptible DA strain and the EAE-resistant PVG.1AV1 strain. Linkage analysis performed in the advanced intercross line considerably narrowed down the myelin oligodendrocyte glycoprotein-EAE regulatory locus (Eae5) to a approximately 1.3-megabase region with a defined number of candidate genes. In this study we demonstrate a regulatory effect of Eae5 on MOG-EAE by using both congenic strains as well as fine mapping these effects to a region containing Ncf-1, a gene associated with arthritis. In addition to structural polymorphisms in Ncf-1, both sequence polymorphisms and expression differences were identified in CLDN4. CLDN4 is a tight junction protein involved in blood-brain barrier integrity. In conclusion, our data strongly suggests Ncf-1 to be a gene shared between two organ-specific inflammatory diseases with a possible contribution by CLDN4 in encephalomyelitis.  相似文献   
38.
In both collagen-induced arthritis (CIA) and rheumatoid arthritis, T cells recognize a galactosylated peptide from type II collagen (CII). In this study, we demonstrate that the CII259-273 peptide, galactosylated at lysine 264, in complex with Aq molecules prevented development of CIA in mice and ameliorated chronic relapsing disease. In contrast, nonglycosylated CII259-273/Aq complexes had no such effect. CIA dependent on other MHC class II molecules (Ar/Er) was also down-regulated, indicating a bystander vaccination effect. T cells could transfer the amelioration of CIA, showing that the protection is an active process. Thus, a complex between MHC class II molecules and a posttranslationally modified peptide offers a new possibility for treatment of chronically active autoimmune inflammation such as rheumatoid arthritis.  相似文献   
39.
Genetic segregation analysis between NOD and C57BL strains have been used to identify loci associated with autoimmune disease. Only two loci (Cia2 and Cia9) had earlier been found to control development of arthritis, whereas none of the previously identified diabetes loci was of significance for arthritis. We have now made a high-powered analysis of a backcross of NOD genes on to the B10.Q strain for association with collagen-induced arthritis. We could confirm relevance of both Cia2 and Cia9 as well as the interaction between them, but we did not identify any other significant arthritis loci. Immune cellular subtyping revealed that Cia2 was also associated with the number of blood macrophages. Congenic strains of the Cia2 and Cia9 loci on the B10.Q background were made and used to establish a partial advanced intercross (PAI). Testing the PAI mice for development of collagen-induced arthritis confirmed the loci and the interactions and also indicated that at least two genes contribute to the Cia9 locus. Furthermore, it clearly showed that Cia2 is dominant protective but that the protection is not complete. Because these results may indicate that the Cia2 effect on arthritis is not only due to the deficiency of the complement C5, we analyzed complement functions in the Cia2 congenics as well as the PAI mice. These data show that not only arthritis but also C5-dependent complement activity is dominantly suppressed, confirming that C5 is one of the major genes explaining the Cia2 effect.  相似文献   
40.
Carbohydrate-lectin interactions were probed with dynamic combinatorial libraries, using the plant lectin Concanavalin A as target species. The dynamic combinatorial libraries were generated from a pool of thiol components through reversible thiol-disulfide interchange, and screened using a simple and efficient method based on a quartz crystal microbalance setup. It was found that dimers based on 1-thio- and 6-thio-mannose analogues were the most active inhibitors. Furthermore, the results clearly show that the 6-thio-mannose possess unique characteristics compared to its oxygen-containing counterpart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号