首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   61篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   15篇
  2014年   7篇
  2013年   17篇
  2012年   24篇
  2011年   23篇
  2010年   17篇
  2009年   17篇
  2008年   14篇
  2007年   12篇
  2006年   15篇
  2005年   11篇
  2004年   16篇
  2003年   15篇
  2002年   10篇
  2001年   18篇
  2000年   8篇
  1999年   10篇
  1998年   12篇
  1997年   8篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1981年   4篇
  1980年   2篇
  1979年   5篇
  1978年   6篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
291.
1. We investigated the effects of riparian plant diversity (species number and identity) and temperature on microbially mediated leaf decomposition by assessing fungal biodiversity, fungal reproduction and leaf mass loss. 2. Leaves of five riparian plant species were first immersed in a stream to allow microbial colonisation and were then exposed, alone or in all possible combinations, at 16 or 24 °C in laboratory microcosms. 3. Fungal biodiversity was reduced by temperature but was not affected by litter diversity. Temperature altered fungal community composition with species of warmer climate, such as Lunulospora curvula, becoming dominant. 4. Fungal reproduction was affected by litter diversity, but not by temperature. Fungal reproduction in leaf mixtures did not differ or was lower than that expected from the weighted sum of fungal sporulation on individual leaf species. At the higher temperature, the negative effect of litter diversity on fungal reproduction decreased with the number of leaf species. 5. Leaf mass loss was affected by the identity of leaf mixtures (i.e. litter quality), but not by leaf species number. This was mainly explained by the negative correlation between leaf decomposition and initial lignin concentration of leaves. 6. At 24 °C, the negative effects of lignin on microbially mediated leaf decomposition diminished, suggesting that higher temperatures may weaken the effects of litter quality on plant litter decomposition in streams. 7. The reduction in the negative effects of lignin at the higher temperature resulted in an increased microbially mediated litter decomposition, which may favour invertebrate‐mediated litter decomposition leading to a depletion of litter stocks in streams.  相似文献   
292.
β-glucans are known for their immune-modulating properties. However, the heterogeneity of these glucose polymers makes a distinction between the different sources and structures necessary-a fact that has been little allowed for in the literature. We have focused on β-glucans from cereals as they are already used as functional food ingredients due to their established cholesterol lowering effect. Cereal β-glucans have shown in vitro activity on cytokine secretion, phagocytic activity and cytotoxicity of isolated immune cells, and activation of the complement system. Animal studies suggest a possible protective effect against an intestinal parasite, against bacterial infection, and a synergistic effect in antibody-dependent cellular cytotoxicity. Animal studies have shown activity of orally applied cereal β-glucans indicating uptake or interaction with cells of the gastrointestinal tract. However, uptake is still debated, interaction with intestinal epithelial cells has been suggested but not clarified, and mechanisms of action remain largely unknown. So far, cereal β-glucans have not shown immune modulation in the few conducted human studies and further studies are needed to clarify their effect.  相似文献   
293.
294.
295.
296.
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from ~50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the ~82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.  相似文献   
297.
Cyclin-dependent kinase 1 (Cdk1) initiates mitosis and later activates the anaphase-promoting complex/cyclosome (APC/C) to destroy cyclins. Kinetochore-derived checkpoint signaling delays APC/C-dependent cyclin B destruction, and checkpoint-independent mechanisms cooperate to limit APC/C activity when kinetochores lack checkpoint components in early mitosis. The APC/C and cyclin B localize to the spindle and poles, but the significance and regulation of these populations remain unclear. Here we describe a critical spindle pole-associated mechanism, called the END (Emi1/NuMA/dynein-dynactin) network, that spatially restricts APC/C activity in early mitosis. The APC/C inhibitor Emi1 binds the spindle-organizing NuMA/dynein-dynactin complex to anchor and inhibit the APC/C at spindle poles, and thereby limits destruction of spindle-associated cyclin B. Cyclin B/Cdk1 activity recruits the END network and establishes a positive feedback loop to stabilize spindle-associated cyclin B critical for spindle assembly. The organization of the APC/C on the spindle also provides a framework for understanding microtubule-dependent organization of protein destruction.  相似文献   
298.
299.
Seven novel KIT mutations in horses with white coat colour phenotypes   总被引:2,自引:0,他引:2  
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号