首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   75篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   6篇
  2016年   13篇
  2015年   19篇
  2014年   27篇
  2013年   20篇
  2012年   59篇
  2011年   41篇
  2010年   39篇
  2009年   27篇
  2008年   46篇
  2007年   53篇
  2006年   42篇
  2005年   28篇
  2004年   45篇
  2003年   39篇
  2002年   46篇
  2001年   13篇
  2000年   20篇
  1999年   15篇
  1998年   11篇
  1997年   13篇
  1996年   14篇
  1995年   5篇
  1994年   7篇
  1993年   6篇
  1992年   11篇
  1991年   11篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   9篇
  1985年   8篇
  1984年   9篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1978年   6篇
  1977年   6篇
  1976年   4篇
  1975年   6篇
  1972年   4篇
  1968年   5篇
  1964年   4篇
  1963年   4篇
  1960年   4篇
排序方式: 共有849条查询结果,搜索用时 218 毫秒
51.
A mutation (Cam7) to the single endogenous calmodulin gene of Drosophila generates a mutant protein with valine 91 changed to glycine (V91G D-CaM). This mutation produces a unique pupal lethal phenotype distinct from that of a null mutation. Genetic studies indicate that the phenotype reflects deregulation of calcium fluxes within the larval muscles, leading to hypercontraction followed by muscle failure. We investigated the biochemical properties of V91G D-CaM. The effects of the mutation on free CaM are minor: Calcium binding, and overall secondary and tertiary structure are indistinguishable from those of wild type. A slight destabilization of the C-terminal domain is detectable in the calcium-free (apo-) form, and the calcium-bound (holo-) form has a somewhat lower surface hydrophobicity. These findings reinforce the indications from the in vivo work that interaction with a specific CaM target(s) underlies the mutant defects. In particular, defective regulation of ryanodine receptor (RyR) channels was indicated by genetic interaction analysis. Studies described here establish that the putative CaM binding region of the Drosophila RyR (D-RyR) binds wild-type D-CaM comparably to the equivalent CaM-RyR interactions seen for the mammalian skeletal muscle RyR channel isoform (RYR1). The V91G mutation weakens the interaction of both apo- and holo-D-CaM with this binding region, and decreases the enhancement of the calcium-binding affinity of CaM that is detectable in the presence of the RyR target peptide. The predicted functional consequences of these changes are consonant with the in vivo phenotype, and indicate that D-RyR is one, if not the major, target affected by the V91G mutation in CaM.  相似文献   
52.
Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardment with the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.  相似文献   
53.
Reactive oxygen species produced during hyperoxia damage DNA, inhibit proliferation in G1- through p53-dependent activation of p21(Cip1/WAF1/Sdi1), and kill cells. Because checkpoint activation protects cells from genotoxic stress, we investigated cell proliferation and survival of the murine type II epithelial cell line MLE15 during hyperoxia. These cells were chosen for study because they express Simian large and small-T antigens, which transform cells in part by disrupting the p53-dependent G1 checkpoint. Cell counts, 5-bromo-2'-deoxyuridine labeling, and flow cytometry revealed that hyperoxia slowed cell cycle progression after one replication, resulting in a pronounced G2 arrest by 72 h. Addition of caffeine, which inactivates the G2 checkpoint, diminished the percentage of hyperoxic cells in G2 and increased the percentage in sub-G1 and G1. Abrogation of the G2 checkpoint was associated with enhanced oxygen-induced DNA strand breaks and cell death. Caffeine did not affect DNA integrity or viability of cells exposed to room air. Similarly, caffeine abrogated the G2 checkpoint in hyperoxic A549 epithelial cells and enhanced oxygen-induced toxicity. These data indicate that hyperoxia rapidly inhibits proliferation after one cell cycle and that the G2 checkpoint is critical for limiting DNA damage and cell death.  相似文献   
54.
Estrogens are known to influence a variety of autoimmune diseases, but it is not known whether their actions are mediated through classic estrogen receptor alpha (ERalpha). The presence of a functional ER was demonstrated in secondary lymphoid tissues, then ERalpha expression was shown at both the RNA and protein levels in these tissues. Use of ERalpha knockout mice revealed that both the estrogen-induced disease protection and the estrogen-induced reduction in proinflammatory cytokines were dependent upon ERalpha in the prototypic Th1-mediated autoimmune disease experimental autoimmune encephalomyelitis. These findings are central to the design of selective ER modifiers which aim to target biologic responses in specific organ systems.  相似文献   
55.
Store-operated calcium channels (SOC) play a central role in cellular calcium homeostasis. Although it is well established that SOC are activated by depletion of the endoplasmic reticulum calcium stores, the molecular mechanism underlying this effect remains ill defined. It has been suggested that SOC activation requires fusion of endomembrane vesicles with the plasmalemma. In this model, SNARE-dependent exocytosis is proposed to deliver channels or their activators to the surface membrane to initiate calcium influx. To test this hypothesis, we studied the requirement for membrane fusion events in SOC activation, using a variety of dominant-negative constructs and toxins that interfere with SNARE function. Botulinum neurotoxin A (BotA), which cleaves SNAP-25, did not prevent SOC activation. Moreover, SNAP-25 was not detectable in the cells where BotA was reported earlier to inhibit SOC. Instead, the BotA-insensitive SNAP-23 was present. Impairment of VAMP function was similarly without effect on SOC opening. We also tested the role of N-ethylmaleimide-sensitive factor, a global regulator of SNARE-mediated membrane fusion. Expression of a mutated N-ethylmaleimide-sensitive factor construct inhibited all aspects of membrane traffic tested, including recycling of transferrin receptors to the plasma membrane, fusion of endosomes with lysosomes, and retrograde traffic to the Golgi complex. Despite this global inhibition of vesicular fusion, which was accompanied by gross alterations in cell morphology, SOC activation persisted. These observations cannot be easily reconciled with the vesicle-mediated coupling hypothesis of SOC activation. Our findings imply that the SOC and the machinery necessary to activate them exist in the plasma membrane or are associated with it prior to activation.  相似文献   
56.
Striated muscles, cardiac and skeletal muscles, use calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium activate calcineurin, a serine/threonine phosphatase, resulting in expression of a set of genes involved in remodeling striated muscle. Activation of calcineurin in hearts produces cardiac hypertrophy, and in skeletal muscle promotes cell differentiation and transforms fiber type specificity. In this review we discuss the effects of calcineurin activity on development, adaptation, and disease of striated muscle.  相似文献   
57.
Abstract.— Traditional models of sexual selection propose that partner choice increases both average male and average female fitness in a population. Recent theoretical and empirical work, however, has stressed that sexual conflict may be a potent broker of sexual selection. When the fitness interests of males and females diverge, a reproductive strategy that increases the fitness of one sex may decrease the fitness of the other sex. The chase-away hypothesis proposes that sexual conflict promotes sexually antagonistic, rather than mutualistic, coevolution, whereby manipulative reproductive strategies in one sex are counteracted by the evolution of resistance to such strategies in the other sex. In this paper, we consider the criteria necessary to demonstrate the chase-away hypothesis. Specifically, we review sexual conflict with particular emphasis on the chase-away hypothesis; discuss the problems associated with testing the predictions of the chase-away hypothesis and the extent to which these predictions and the predictions of traditional models of sexual selection are mutually exclusive; discuss misconceptions and mismeasures of sexual conflict; and suggest an alternative approach to demonstrate sexual conflict, measure the intensity of sexually antagonistic selection in a population, and elucidate the coevolutionary trajectories of the sexes.  相似文献   
58.
Activation of endothelial cell NF-kappaB by interleukin (IL)-1 constitutes an event critical to the progression of the innate immune response. In this context, oxidants have been associated with NF-kappaB activation, although the molecular source and mechanism of targeting have remained obscure. We found that RelA, essential for NF-kappaB activation by IL-1, was associated with the NADPH oxidase adapter protein p47(phox) in yeast two-hybrid, coprecipitation, and in vitro binding studies. RelA and p47-GFP also colocalized in endothelial cells in focal submembranous dorsoventral protrusions. Overexpression of p47(phox) synergized with IL-1beta in the activation of an artificial kappaB-luciferase reporter and specifically augmented IL-1beta-induced RelA transactivation activity. p47(phox) overexpression also greatly increased IL-1beta-stimulated RelA phosphorylation, whereas it had no effect on I-kappaB degradation or on RelA nuclear translocation or kappaB binding. The tandem SH3 domains of p47(phox) were found to associate with a proline-rich mid-region of RelA (RelA-PR) located between the Rel homology and transactivation domains. The RelA-PR peptide blocked interaction of p47(phox) and RelA, and ectopic expression of RelA-PR abrogated IL-1beta-induced transactivation of the NF-kappaB-dependent E-selectin promoter. Further, suppression of NADPH oxidase function through the inhibitor diphenylene iodonium, the superoxide dismutase mimetic Mn(III) tetrakis(4-benzoic acid)porphyrin (MnTBAP), or expression of a dominant interfering mutant of a separate NADPH oxidase subunit (p67(V204A)) decreased IL-1beta-induced E-selectin promoter activation, suggesting that p47(phox) facilitates NF-kappaB activation through linkage with the NADPH oxidase. IL-1beta rapidly increased tyrosine phosphorylation of IL-1 type I receptor-associated proteins, suggesting that oxidants may operate through inactivation of local protein-tyrosine phosphatases in the proximal IL-1beta signaling pathway leading to RelA activation.  相似文献   
59.
Mga is a DNA-binding protein that activates expression of several important virulence genes in the group A streptococcus (GAS), including those encoding M protein (emm), C5a peptidase (scpA) and Mga (mga). To determine the functionality of four potential helix-turn-helix DNA-binding motifs (HTH1-HTH4) identified within the amino-terminus of Mga, alanine substitutions were introduced within each domain in a MBP-Mga fusion allele and purified proteins were assayed for binding to Mga-specific promoter fragments (Pmga, PscpA and Pemm) in vitro. Although HTH-1 and HTH-2 mutations showed wild type DNA-binding activity, an altered HTH-3 domain resulted in reduced binding to the three promoters and an HTH-4 mutant was devoid of detectable binding activity. Plasmid-encoded expression of the HTH-3 and HTH-4 alleles from a constitutive promoter (Pspac) in the mga-deleted GAS strain JRS519 demonstrated that Mga-regulated emm expression correlated directly to the DNA-binding activity observed for each mutant protein in vitro. Single-copy expression of HTH-3 and HTH-4 from their native Pmga resulted in a dramatic reduction in autoregulated mga expression in both mutant strains. Thus, Mga appears to contain two DNA-binding domains (HTH-3 and HTH-4) that are required for direct activation of the Mga virulence regulon in vivo.  相似文献   
60.
Cipollo JF  Trimble RB 《Glycobiology》2002,12(11):749-762
N-glycosylation in nearly all eukaryotes proceeds in the endoplasmic reticulum (ER) by transfer of the precursor Glc(3)Man(9)GlcNAc(2) from dolichyl pyrophosphate (PP-Dol) to consensus Asn residues in nascent proteins. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide lipid properly, and the alg12 mutant accumulates a Man(7)GlcNAc(2)-PP-Dol intermediate. We show that the Man(7)GlcNAc(2) released from alg12Delta-secreted invertase is Manalpha1,2Manalpha1,2Manalpha1,3(Manalpha1,2Manalpha1,3Manalpha1,6)-Manbeta1,4-GlcNAcbeta1-4GlcNAcalpha/beta, confirming that the Man(7)GlcNAc(2) is the product of the middle-arm terminal alpha1,2-mannoslytransferase encoded by the ALG9 gene. Although the ER glucose addition and trimming events are similar in alg12Delta and wild-type cells, the central-arm alpha1,2-linked Man residue normally removed in the ER by Mns1p persists in the alg12Delta background. This confirms in vivo earlier in vitro experiments showing that the upper-arm Manalpha1,2Manalpha1,6-disaccharide moiety, missing in alg12Delta Man(7)GlcNAc(2), is recognized and required by Mns1p for optimum mannosidase activity. The presence of this Man influences downstream glycan processing by reducing the efficiency of Ochlp, the cis-Golgi alpha1,6-mannosyltransferase responsible for initiating outer-chain mannan synthesis, leading to hypoglycosylation of external invertase and vacuolar protease A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号