首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   27篇
  国内免费   1篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   10篇
  2016年   10篇
  2015年   21篇
  2014年   19篇
  2013年   16篇
  2012年   45篇
  2011年   33篇
  2010年   17篇
  2009年   24篇
  2008年   32篇
  2007年   29篇
  2006年   29篇
  2005年   29篇
  2004年   21篇
  2003年   19篇
  2002年   26篇
  2001年   23篇
  2000年   12篇
  1999年   16篇
  1998年   6篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1982年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1967年   1篇
  1962年   1篇
排序方式: 共有514条查询结果,搜索用时 15 毫秒
71.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces innate immune responses through Toll-like receptor (TLR) 2 and TLR4. We investigated the role of apoptosis-regulating signal kinase (ASK) 1 in reactive oxygen species (ROS)-mediated innate immune responses induced by BCG mycobacterial infection. In macrophages, M. bovis BCG stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs), secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and ROS generation in a TLR2- and TLR4-dependent manner. M. bovis BCG-induced ROS production led to robust activation of ASK1 upstream of the c-jun-N-terminal kinase and p38 MAPK, but not extracellular-regulated kinase 1/2. Blocking ASK1 activity markedly attenuated M. bovis BCG-induced TNF-alpha and IL-6 production by macrophages. Both TLR2 and TLR4 were required for optimal activation of ASK1 in response to M. bovis BCG. Furthermore, we present evidence that TNF receptor-associated factor (TRAF) 6 activities were essential for ROS-mediated ASK1 activation by M. bovis BCG. Finally, ASK1 activities were required for effective control of intracellular mycobacterial survival. Thus, the results of this study suggest a novel role of the TLR-ROS-TRAF6-ASK1 axis in the innate immune response to mycobacteria as a signaling intermediate.  相似文献   
72.
Leucyl-tRNA synthetase (LeuRS) is an essential RNA splicing factor for yeast mitochondrial introns. Intracellular experiments have suggested that it works in collaboration with a maturase that is encoded within the bI4 intron. RNA deletion mutants of the large bI4 intron were constructed to identify a competently folded intron for biochemical analysis. The minimized bI4 intron was active in RNA splicing and contrasts with previous proposals that the canonical core of the bI4 intron is deficient for catalysis. The activity of the minimized bI4 intron was enhanced in vitro by the presence of the bI4 maturase or LeuRS.Although the aminoacyl-tRNA synthetases (aaRSs)6 are best known for their role in protein synthesis, many have functionally expanded and are essential to a wide range of other cellular activities that are unrelated to tRNA aminoacylation (1). The class I aaRSs, leucyl- (LeuRS or NAM2) and tyrosyl-tRNA synthetase (TyrRS or CYT-18) are required for RNA splicing of cognate group I introns in the mitochondria of certain lower eukaryotes (2). In yeast, processing of two related group I introns called bI4 and aI4α (Fig. 1) from the cob and cox1α genes, respectively, require yeast mitochondrial LeuRS (3, 4). Likewise, expression of Neurospora crassa mitochondrial genes, such as those for the large ribosomal RNA, is dependent on TyrRS for excising group I introns (5).Open in a separate windowFIGURE 1.Predicted secondary structures of the bI4 and aI4α group I introns. The secondary structure of the canonical core was based on previous predictions (19). Solid bold lines indicate linear connectivities of the nucleic acid strand with arrowheads oriented in the 5′ to 3′ direction. The dashed lines represent putative tertiary interactions. Dotted lines with numbers identify insertions where secondary structures were ambiguous. Arrows in the P1 and P9 domain show splice sites, whereas boxed nucleotides are paired regions.LeuRS facilitates RNA splicing in concert with a bI4 maturase that is encoded within the bI4 intron. Genetic investigations showed that an inactivated bI4 maturase resulting in deficient splicing activity of the bI4 and aI4α group I introns can be rescued by a suppressor mutation of LeuRS to restore mitochondrial respiration (4, 6). In addition, the splicing defect can be compensated by a mutant aI4α DNA endonuclease that is closely related to the bI4 maturase (7, 8).Previously, we used intracellular three-hybrid assays to demonstrate that LeuRS and bI4 maturase can independently bind to the bI4 intron and stimulate RNA splicing activity in the non-physiological yeast nucleus compartment (9). RNA-dependent two-hybrid assays also supported that the bI4 intron could simultaneously bind both the bI4 maturase and LeuRS. In this case, the RNA was co-expressed with LeuRS and bI4 maturase that was fused to either LexA or B42 to generate a two-hybrid response. This suggested that the bI4 intron was bridging these two protein splicing factors. In either the RNA-dependent two-hybrid or three-hybrid assays, bI4 intron splicing occurred only in the presence of LeuRS or bI4 maturase or both.We hypothesized that the bI4 maturase and LeuRS bind to distinct sites of the bI4 intron to form a ternary complex and promote efficient splicing activity. However, the functional basis of the collaboration between these two splicing cofactors or how either of them promotes RNA splicing remains unclear.We sought to characterize the respective splicing roles of the bI4 maturase and LeuRS via biochemical investigations. Previous attempts to develop an in vitro splicing assay for the bI4 intron or its closely related aI4α intron have failed (10, 11). It was hypothesized that the long length of the bI4 intron (∼1600 nucleotides) and its highly A:U-rich content (∼80%) hindered RNA folding in vitro as well as stabilization of its competent structure.Efforts to produce an active form of the bI4 intron have relied on building chimeric group I introns by interchanging RNA domains with the more stable Tetrahymena thermophila group I intron (11). Based on these results, it was proposed that the catalytic core of the bI4 group I intron was inherently defective (11). In this case, the group I intron would be expected to be completely dependent on its protein splicing factors similar to the bI3 intron that relies on the bI3 maturase and Mrs1 for activity (12). Thus, it was hypothesized that the bI4 maturase and/or LeuRS splicing factors aided the bI4 group I intron by targeting its core region to compensate for these deficiencies.We focused our efforts on re-designing the bI4 intron to develop a minimized molecule that might be competent for splicing. Because both the bI4 and aI4α group I introns rely on the bI4 maturase and LeuRS for their splicing activity, we compared their secondary structures to identify and eliminate peripheral regions outside of their catalytic cores. A small active derivative of the bI4 intron, comprised of just 380 nucleotides primarily from the canonical core, was generated. Thus, we show that, in and of itself, the canonical core of this group I intron is competent for splicing. Both the bI4 maturase and LeuRS enhance the splicing activity of the minimized bI4 intron. However, it is possible that protein-dependent splicing of the bI4 intron represents an intermediate evolutionary step in which the RNA activity is becoming increasingly dependent on its protein splicing factors.  相似文献   
73.
74.
The current pandemic (H1N1) 2009 virus remains transmissible among humans worldwide with cases of reverse zoonosis, providing opportunities to produce more pathogenic variants which could pose greater human health concerns. To investigate whether recent seasonal human or swine H1N1 vaccines could induce cross-reactive immune responses against infection with the pandemic (H1N1) 2009 virus, mice, ferrets or mini-pigs were administered with various regimens (once or twice) and antigen content (1.77, 3.5 or 7.5 µg HA) of a-Brsibane/59/07, a-CAN01/04 or RgCA/04/09xPR8 vaccine. Receipt of a-CAN01/04 (2-doses) but not a-Brisbane/59/07 induced detectable but modest (20–40 units) cross-reactive serum antibody against CA/04/09 by hemagglutinin inhibition (HI) assays in mice. Only double administration (7.5 µg HA) of both vaccine in ferrets could elicit cross-reactivity (30–60 HI titers). Similar antigen content of a-CAN01/04 in mini-pigs also caused a modest ∼30 HI titers (twice vaccinated). However, vaccine-induced antibody titers could not suppress active virus replication in the lungs (mice) or virus shedding (ferrets and pigs) of immunized hosts intranasally challenged with CA/04/09. Furthermore, neither ferrets nor swine could abrogate aerosol transmission of the virus into naïve contact animals. Altogether, these results suggest that neither recent human nor animal H1N1 vaccine could provide complete protectivity in all animal models. Thus, this study warrants the need for strain-specific vaccines that could yield the optimal protection desired for humans and/or animals.  相似文献   
75.
Tumor-derived exosomes (TEXs) contain enriched miRNAs, and exosomal miRNAs can affect tumor growth, including cell proliferation, metastasis, and drug resistance through cell-to-cell communication. We investigated the role of exosomal miR-1260b derived from non-small cell lung cancer (NSCLC) in tumor progression. Exosomal miR-1260b induced angiogenesis by targeting homeodomain-interacting protein kinase-2 (HIPK2) in human umbilical vein endothelial cells (HUVECs). Furthermore, exosomal miR-1260b or suppression of HIPK2 led to enhanced cellular mobility and cisplatin resistance in NSCLC cells. In patients with NSCLC, the level of HIPK2 was significantly lower in tumor tissues than in normal lung tissues, while that of miR-1260b was higher in tumor tissues. HIPK2 and miR-1260b expression showed an inverse correlation, and this correlation was strong in distant metastasis. Finally, the expression level of exosomal miR-1260b in plasma was higher in patients with NSCLC than in healthy individuals, and higher levels of exosomal miR-1260b were associated with high-grade disease, metastasis, and poor survival. In conclusion, exosomal miR-1260b can promote angiogenesis in HUVECs and metastasis of NSCLC by regulating HIPK2 and may serve as a prognostic marker for lung cancers.Subject terms: Non-small-cell lung cancer, Metastasis, miRNAs  相似文献   
76.
Due to its multiple biological activities, 5,7-dihydroxyflavone (chrysin) in propolis has gained attention as potentially useful therapeutics for various diseases. However, the efficacy of chrysin for the use of dermatological health has not been fully explored. To clarify the action mechanism of the skin protecting property of chrysin, we firstly investigated the molecular docking property of chrysin on the mammalian adenylyl cyclase, which is the key enzyme of cAMP-induced melanogenesis. We also examined the involvement of chrysin in alpha-MSH and forskolin-induced cAMP signaling within a cell based assay. In addition, we inquired into the inhibitory effect of chrysin on melanogenesis and found that the pretreatment with chrysin inhibited the forskolin-induced melanin contents significantly without annihilating the cell viability. These results strongly suggest that chrysin directly inhibits the activity of adenylyl cyclase, downregulates forskolin-induced cAMP-production pathway, consequently inhibiting melanogenesis. Thus, chrysin may also be used as an effective inhibitor of hyperpigmentation.  相似文献   
77.
Clec14a is a member of the thrombomodulin (TM) family, but its function has not yet been determined. Here, we report that Clec14a is a plasma membrane protein of endothelial cells (ECs) expressed specifically in the vasculature of mice. Deletion mutant analysis revealed that Clec14a mediates cell–cell adhesion through its C-type lectin-like domain. Knockdown of Clec14a in ECs suppressed cell migratory activity and filopodial protrusion, and delayed formation of tube-like structures. These findings demonstrate that Clec14a is a novel EC-specific protein that appears to play a role in cell–cell adhesion and angiogenesis.  相似文献   
78.
TopBP1 was initially identified as a topoisomerase II‐β‐binding protein and it plays roles in DNA replication and repair. We found that TopBP1 is expressed at high levels in lymphoid tissues and is essential for early lymphocyte development. Specific abrogation of TopBP1 expression resulted in transitional blocks during early lymphocyte development. These defects were, in major part, due to aberrant V(D)J rearrangements in pro‐B cells, double‐negative and double‐positive thymocytes. We also show that TopBP1 was located at sites of V(D)J rearrangement. In TopBP1‐deficient cells, γ‐H2AX foci were found to be increased. In addition, greater amount of γ‐H2AX product was precipitated from the regions where TopBP1 was localized than from controls, indicating that TopBP1 deficiency results in inefficient DNA double‐strand break repair. The developmental defects were rescued by introducing functional TCR αβ transgenes. Our data demonstrate a novel role for TopBP1 as a crucial factor in V(D)J rearrangement during the development of B, T and iNKT cells.  相似文献   
79.

Background

The current study aims at evaluating the analgesic, anti-pyretic and anti-inflammatory properties of methanolic extract of the stem, bark and leaves of Launaea sarmentosa and Aegialitis rotundifolia roxb.

Results

The AELS and AEAR extract presented a significant (***p < 0.001) dose dependent increase in reaction time in writhing method and showed inhibition of 63.1% and 57.1% respectively at the doses of 400 mg/kg body weight while standard drug showed (P < 0.001) inhibition of 69.23%. In tail immersion method, AELS and AEAR showed maximum time of tail retention at 30 min in hot water i.e. 6.93 sec and 6.54 sec respectively at highest doses of 400 mg/kg body weight than lower dose while standard pentazocine showed reaction time of 7.62 sec. The AELS and AEAR extract also exhibited promising anti-inflammatory effect as demonstrated by statistically significant inhibition of paw volume by 32.48% and 26.75% respectively at the dose of 400 mg/kg body weight while the value at the dose of 200 mg/kg body weight were linear to higher dose at the 3rd hour of study. On the other hand, Standard indomethacin inhibited 40.13% of inflammation (***P < 0.001). In Cotton-pellet granuloma method, AELS and AEAR extract at the dose of 400 mg/kg body weight exhibited inhibition of inflammation of 34.7% and 29.1% respectively while standard drug showed (P < 0.001) inhibition of 63.22%. Intraperitoneal administration of AELS and AEAR showed dose dependent decrease in body temperature in brewer’s yeast induced hyperthermia in rats at both doses. However, AELS significantly decreased body temperature (***p < 0.001) at 400 mg/kg compared to control.

Conclusions

Present work propose that the methanolic extract of Launaea sarmentosa and Aegialitis rotundifolia roxb possesses dose dependent pharmacological action which supports its therapeutic use in folk medicine possibly mediated through the inhibition or blocking of release of prostaglandin and/or actions of vasoactive substances such as histamine, serotonin and kinins.  相似文献   
80.
Epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitors (TKIs), including gefitinib, are the first‐line treatment of choice for nonsmall cell lung cancer patients who harbor activating EGFR mutations, however, acquired resistance to EGFR‐TKIs is inevitable. The main objective of this study was to identify informative protein signatures of extracellular vesicles (EV) derived from gefitinib‐resistant nonsmall cell lung cancer cells using proteomics analysis. Nano‐LC–MS/MS analysis identified with high confidence (false discovery rate < 0.05, fold change ≥2) 664 EV proteins enriched in PC9R cells, which are resistant to gefitinib due to EGFR T790M mutation. Computational analyses suggested components of several signal transduction mechanisms including the AKT (also PKB, protein kinase B)/mTOR (mechanistic target of rapamycin) pathway are overrepresented in EV from PC9R cells. Treatment of recipient cells with EV harvested from PC9R cells increased phosphorylation of signaling molecules, and enhanced proliferation, invasion, and drug resistance to gefitinib‐induced apoptosis. Dose‐ and time‐dependent pharmaceutical inhibition of AKT/mTOR pathway overcame drug resistance of PC9R cells and those of H1975 exhibiting EGFR T790M mutation. Our findings provide new insight into an oncogenic EV protein signature regulating tumor microenvironment, and will aid in the development of novel diagnostic strategies for prediction and assessment of gefitinib resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号