首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   27篇
  2023年   1篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   8篇
  2016年   7篇
  2015年   17篇
  2014年   14篇
  2013年   37篇
  2012年   31篇
  2011年   34篇
  2010年   27篇
  2009年   35篇
  2008年   33篇
  2007年   37篇
  2006年   42篇
  2005年   45篇
  2004年   25篇
  2003年   27篇
  2002年   23篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有524条查询结果,搜索用时 88 毫秒
71.
From the methanolic extracts of solid callus cultures from two species of the closely related palaeotropical plant families Dioncophyllaceae and Ancistrocladaceae seven new natural naphthoquinones were isolated, dioncoquinones A (4) and B (5) from Triphyophyllum peltatum, and ancistroquinones B (6), C (7), D (9), E (10), and F (12) from Ancistrocladus abbreviatus. Their structures were elucidated by spectroscopic, chemical, and computational methods. Furthermore, the already known naphthoquinones plumbagin (2), droserone (3), malvone A (8), and nepenthone A (11) were found in the extract of A. abbreviatus. Dioncoquinones A (4) and B (5) showed good - and specific - activity against Leishmania major, while they were not active against other protozoic parasites. Moreover, treatment with 4 and 5 strongly induced apoptosis in human tumor cells derived from two different B cell malignancies, B cell lymphoma and multiple myeloma, without any significant toxicity towards normal peripheral mononuclear blood cells.  相似文献   
72.
Three endangered plant species, Plantago atrata and Pulsatilla slavica, which are on the IUCN red list of plants, and Senecio umbrosus, which is extinct in the wild in Poland, were inoculated with soil microorganisms to evaluate their responsiveness to inoculation and to select the most effective microbial consortium for application in conservation projects. Individuals of these taxa were cultivated with (1) native arbuscular mycorrhizal fungi (AMF) isolated from natural habitats of the investigated species, (2) a mixture of AMF strains available in the laboratory, and (3) a combination of AMF lab strains with rhizobacteria. The plants were found to be dependent on AMF for their growth; the mycorrhizal dependency for P. atrata was 91%, S. umbrosus-95%, and P. slavica-65%. The applied inocula did not significantly differ in the stimulation of the growth of P. atrata and S. umbrosus, while in P. slavica, native AMF proved to be the less efficient. We therefore conclude that AMF application can improve the ex situ propagation of these three threatened taxa and may contribute to the success of S. umbrosus reintroduction. A multilevel analysis of chlorophyll a fluorescence transients by the JIP test permitted an in vivo evaluation of plant vitality in terms of biophysical parameters quantifying photosynthetic energy conservation, which was found to be in good agreement with the results concerning physiological parameters. Therefore, the JIP test can be used to evaluate the influence of AMF on endangered plants, with the additional advantage of being applicable in monitoring in a noninvasive way the acclimatization of reintroduced species in nature.  相似文献   
73.
Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.  相似文献   
74.
N(1)-Phenyl-3,5-dinitro-N(4),N(4)-di-n-propylsulfanilamide (1) and N(1)-phenyl-3,5-dinitro-N(4),N(4)-di-n-butylsulfanilamide (2) show potent in vitro antimitotic activity against kinetoplastid parasites but display poor in vivo activity. Seventeen new dinitroaniline sulfonamide and eleven new benzamide analogs of these leads are reported here. Nine of the sulfonamides display in vitro IC(50) values under 500 nM against African trypanosomes, and the most active antikinetoplastid compounds also inhibit the in vitro assembly of purified leishmanial tubulin with potencies similar to that of 2. While several of the potent compounds are rapidly degraded by rat liver S9 fractions in vitro, N(1)-(3-hydroxy)phenyl-3,5-dinitro-N(4),N(4)-di-n-butylsulfanilamide (21) displays an IC(50) value of 260 nM against African trypanosomes in vitro and is more stable than 2 in the in vitro metabolism assay.  相似文献   
75.
The rapid increase of resistance to drugs commonly used in the treatment of tropical diseases such as malaria and African sleeping sickness calls for the prompt development of new safe and efficacious drugs. The pathogenic protozoan parasites lack the capability of synthesising purines de novo and they take up preformed purines from their host through various transmembrane transporters. Adenosine derivatives constitute a class of potential therapeutics due to their selective internalisation by these transporters. Automated solid-phase synthesis can speed up the process of lead finding and we pursued the solid-phase synthesis of di- and trisubstituted 5'-carboxamidoadenosine derivatives by using a safety-catch approach. While efforts with Kenner's sulfonamide linker remained fruitless, successful application of the hydrazide safety-catch linker allowed the construction of two representative combinatorial libraries. Their antiprotozoal evaluation identified two compounds with promising activity: N(6)-benzyl-5'-N-phenylcarboxamidoadenosine with an IC(50) value of 0.91 microM against Trypanosoma brucei rhodesiense and N(6)-diphenylethyl-5'-phenylcarboxamidoadenosine with an IC(50) value of 1.8 microM against chloroquine resistant Plasmodium falciparum.  相似文献   
76.
Gap junctions in AII amacrine cells of mammalian retina participate in the coordination of the rod and cone signaling pathway involved in visual adaptation. Upon stimulation by light, released dopamine binds to D(1) receptors on AII amacrine cells leading to increased intracellular cAMP (cyclic adenosine monophosphate) levels. AII amacrine cells express the gap junctional protein connexin36 (Cx36). Phosphorylation of Cx36 has been hypothesized to regulate gap junctional activity of AII amacrine cells. However, until now in vivo phosphorylation of Cx36 has not been reported. Indeed, it had been concluded that Cx36 in bovine retina is not phosphorylated, but in vitro phosphorylation for Cx35, the bass ortholog of Cx36, had been shown. To clarify this experimental discrepancy, we examined protein kinase A (PKA)-induced phosphorylation of Cx36 in mouse retina as a possible mechanism to modulate the extent of gap junctional coupling. The cytoplasmic domains of Cx36 and the total Cx36 protein were phosphorylated in vitro by PKA. Mass spectroscopy revealed that all four possible PKA consensus motifs were phosphorylated; however, domains point mutated at the sites in question showed a prevalent usage of Ser-110 and Ser-293. Additionally, we demonstrated that Cx36 was phosphorylated in cultured mouse retina. Furthermore, activation of PKA increased the level of phosphorylation of Cx36. cAMP-stimulated, PKA-mediated phosphorylation of Cx36 protein was accompanied by a decrease of tracer coupling between AII amacrine cells. Our results link increased phosphorylation of Cx36 to down-regulation of permeability through gap junction channels mediating light adaptation in the retina.  相似文献   
77.
The Saccharomyces cerevisiae Cks protein Cks1 has a COOH-terminal glutamine-rich sequence not present in other homologues. Cks proteins domain swap to form dimers but unique to Cks1 is the anti-parallel arrangement of protomers within the dimer. Despite the differences in Cks1 compared with other Cks proteins, we find the domain swapping properties are very similar. However, aggregation of Cks1 occurs by a route distinct from the other Cks proteins studied to date. Cks1 formed fibrillar aggregates at room temperature and neutral pH. During this process, Cks1 underwent proteolytic cleavage at a trypsin-like site into two fragments, the globular Cks domain and the glutamine-rich COOH terminus. At high protein concentrations, the rate of fibril formation was the same as the rate of proteolysis. The dominant species present within the fibrils was the glutamine-rich sequence. Consistent with this result, fibril formation was enhanced by addition of trypsin. Moreover, a truncated variant lacking the glutamine-rich sequence did not form fibrils under the same conditions. A lag phase at low protein concentrations indicates that fibril formation occurs through a nucleation and growth mechanism. The aggregates appear to resemble amyloid fibrils, in that they show the typical cross-beta x-ray diffraction pattern. Moreover, infrared spectroscopy data indicate that the glutamine side chains are hydrogen-bonded along the axis of the fibril. Our results indicate that the proteolytic reaction is the crucial step initiating aggregation and demonstrate that Cks1 is a simple, tunable model system for exploring aggregation mechanisms associated with polyglutamine deposition diseases.  相似文献   
78.
Aggregation of the SH3 domain of the PI3 kinase, both as a single domain and as a tandem repeat in which the C terminus of one domain is linked to the N terminus of another by a flexible linker of ten glycine/serine residues, has been studied under a range of conditions in order to investigate the mechanism of protein aggregation and amyloid formation. The tandem repeat was found to form amyloid fibrils much more readily than the single domain under the acidic conditions used here, and the fibrils themselves have higher morphological homogeneity. The folding-unfolding transition of the PI3-SH3 domain shows two-state behaviour and is pH dependent; at pH 3.6, which is near the pH mid-point for folding and only slightly below the isoelectric point of the protein, both the single domain and the tandem repeat spontaneously form broad distributions of soluble oligomers without requirement for nucleation. Under prolonged incubation under these conditions, the oligomers convert into thin, curly fibrils that interact with thioflavin-T, suggesting that they contain an organised beta-sheet structure. Under more acidic conditions (pH 2.0) where the proteins are fully denatured and carry a positive net charge, long, straight fibrils are formed in a process having a pronounced lag phase. The latter was found to be reduced dramatically by the addition of oligomers exceeding a critical size of approximately 20 molecules. The results suggest that the process of aggregation of these SH3 domains can take place by a variety of mechanisms, ranging from downhill formation of relatively amorphous species to nucleated formation of highly organised structures, the relative importance of which varies greatly with solution conditions. Comparison with the behaviour of other amyloidogenic systems suggests that the general mechanistic features outlined here are likely to be common to at least a wide variety of peptides and proteins.  相似文献   
79.

Background

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a fatal parasitic disease caused by trypanosomes. Current treatment options for HAT are scarce, toxic, no longer effective, or very difficult to administer, in particular for the advanced, fatal stage of the disease (stage 2, chronic HAT). New safe, effective and easy-to-use treatments are urgently needed. Here it is shown that fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining efforts of more than 700 new and existing nitroheterocycles, could be a short-course, safe and effective oral treatment curing both acute and chronic HAT and that could be implemented at the primary health care level. To complete the preclinical development and meet the regulatory requirements before initiating human trials, the anti-parasitic properties and the pharmacokinetic, metabolic and toxicological profile of fexinidazole have been assessed.

Methods and Findings

Standard in vitro and in vivo anti-parasitic activity assays were conducted to assess drug efficacy in experimental models for HAT. In parallel, a full range of preclinical pharmacology and safety studies, as required by international regulatory guidelines before initiating human studies, have been conducted. Fexinidazole is moderately active in vitro against African trypanosomes (IC50 against laboratory strains and recent clinical isolates ranged between 0.16 and 0.93 µg/mL) and oral administration of fexinidazole at doses of 100 mg/kg/day for 4 days or 200 mg/kg/day for 5 days cured mice with acute and chronic infection respectively, the latter being a model for the advanced and fatal stage of the disease when parasites have disseminated into the brain. In laboratory animals, fexinidazole is well absorbed after oral administration and readily distributes throughout the body, including the brain. The absolute bioavailability of oral fexinidazole was 41% in mice, 30% in rats, and 10% in dogs. Furthermore, fexinidazole is rapidly metabolised in vivo to at least two biologically active metabolites (a sulfoxide and a sulfone derivative) that likely account for a significant portion of the therapeutic effect. Key pharmacokinetic parameter after oral absorption in mice for fexinidazole and its sulfoxide and sulfone metabolites are a Cmax of 500, 14171 and 13651 ng/mL respectively, and an AUC0–24 of 424, 45031 and 96286 h.ng/mL respectively. Essentially similar PK profiles were observed in rats and dogs. Toxicology studies (including safety pharmacology and 4-weeks repeated-dose toxicokinetics in rat and dog) have shown that fexinidazole is well tolerated. The No Observed Adverse Event Levels in the 4-weeks repeated dose toxicity studies in rats and dogs was 200 mg/kg/day in both species, with no issues of concern identified for doses up to 800 mg/kg/day. While fexinidazole, like many nitroheterocycles, is mutagenic in the Ames test due to bacterial specific metabolism, it is not genotoxic to mammalian cells in vitro or in vivo as assessed in an in vitro micronucleus test on human lymphocytes, an in vivo mouse bone marrow micronucleus test, and an ex vivo unscheduled DNA synthesis test in rats.

Conclusions

The results of the preclinical pharmacological and safety studies indicate that fexinidazole is a safe and effective oral drug candidate with no untoward effects that would preclude evaluation in man. The drug has entered first-in-human phase I studies in September 2009. Fexinidazole is the first new clinical drug candidate with the potential for treating advanced-stage sleeping sickness in thirty years.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号