首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   890篇
  免费   73篇
  2023年   4篇
  2022年   4篇
  2021年   17篇
  2020年   7篇
  2019年   20篇
  2018年   10篇
  2017年   20篇
  2016年   24篇
  2015年   44篇
  2014年   45篇
  2013年   47篇
  2012年   77篇
  2011年   74篇
  2010年   59篇
  2009年   57篇
  2008年   63篇
  2007年   48篇
  2006年   53篇
  2005年   49篇
  2004年   42篇
  2003年   48篇
  2002年   39篇
  2001年   12篇
  2000年   8篇
  1999年   4篇
  1998年   8篇
  1997年   11篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有963条查询结果,搜索用时 15 毫秒
61.
Xanthomonas campestris pathovar vesicatoria (Xcv) uses the type III secretion system (TTSS) to inject effector proteins into cells of Solanaceous plants during pathogenesis. A number of Xcv TTSS effectors have been identified; however, their function in planta remains elusive. Here, we provide direct evidence for a functional role for a phytopathogenic bacterial TTSS effector in planta by demonstrating that the Xcv effector XopD encodes an active cysteine protease with plant-specific SUMO substrate specificity. XopD is injected into plant cells by the TTSS during Xcv pathogenesis, translocated to subnuclear foci and hydrolyses SUMO-conjugated proteins in vivo. Our studies suggest that XopD mimics endogenous plant SUMO isopeptidases to interfere with the regulation of host proteins during Xcv infection.  相似文献   
62.
63.
EMBRYONIC FLOWER (EMF) genes are required to maintain vegetative development via repression of flower homeotic genes in Arabidopsis. Removal of EMF gene function caused plants to flower upon germination, producing abnormal and sterile flowers. The pleiotropic effect of ernfl mutation suggests its requirement for gene programs involved in diverse developmental processes. Transgenic plants harboring EMF1 promoter::glucuronidase (GUS) reporter gene were generated to investigate the temporal and spatial expression pattern of EMF1. These plants displayed differential GUS activity in vegetative and flower tissues, consistent with the role of EMF1 in regulating multiple gene programs. EMFI::GUS expression pattern in emf mutants suggests organ-specific auto-regulation. Sense- and antisense (as) EMF1 cDNA were expressed under the control of stage- and tissue-specific promoters in transgenic plants. Characterization of these transgenic plants showed that EMF1 activity is required in meristematic as well as differentiating tissues to rescue emf mutant phenotype. Temporal removal or reduction of EMF1 activity in the embryo or shoot apex of wild-type seedlings was sufficient to cause early flowering and terminal flower formation in adult plants. Such reproductive cell memory is reflected in the flower MADS-box gene activity expressed prior to flowering in these early flowering plants. However, temporal removal of EMF1 activity in flower meristem did not affect flower development. Our results are consistent with EMF1's primary role in repressing flowering in order to allow for vegetative growth.  相似文献   
64.
Carbapenem-resistant Klebsiella pneumoniae strains have emerged as a cause of life-threatening infections in susceptible individuals (e.g., transplant recipients and critically ill patients). Strains classified as multilocus sequence type (ST) 258 are among the most prominent causes of carbapenem-resistant K. pneumoniae infections worldwide, but the basis for the success of this lineage remains incompletely determined. To gain a more comprehensive view of the molecules potentially involved in the success of ST258, we used a proteomics approach to identify surface-associated and culture supernatant proteins produced by ST258. Protein samples were prepared from varied culture conditions in vitro, and were analyzed by a combination of two-dimensional electrophoresis and liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). We identified a total of 193 proteins in outer membrane preparations from bacteria cultured in Luria-Bertani broth (LB) or RPMI 1640 tissue culture media (RPMI). Compared with LB, several iron-acquisition proteins, including IutA, HmuR, HmuS, CirA, FepA, FitA, FoxA, FhuD, and YfeX, were more highly expressed in RPMI. Of the 177 proteins identified in spent media, only the fimbrial subunit, MrkA, was predicted to be extracellular, a finding that suggests few proteins (or a limited quantity) are freely secreted by ST258. Notably, we discovered 203 proteins not reported in previous K. pneumoniae proteome studies. In silico modeling of proteins with unknown function revealed several proteins with beta-barrel transmembrane structures typical of porins, as well as possible host-interacting proteins. Taken together, these findings contribute several new targets for the mechanistic study of drug-resistance and pathogenesis by ST258 K. pneumoniae isolates.  相似文献   
65.
Brucella species include important zoonotic pathogens that have a substantial impact on both agriculture and human health throughout the world. Brucellae are thought of as “stealth pathogens” that escape recognition by the host innate immune response, modulate the acquired immune response, and evade intracellular destruction. We analyzed the genome sequences of members of the family Brucellaceae to assess its evolutionary history from likely free-living soil-based progenitors into highly successful intracellular pathogens. Phylogenetic analysis split the genus into two groups: recently identified and early-dividing “atypical” strains and a highly conserved “classical” core clade containing the major pathogenic species. Lateral gene transfer events brought unique genomic regions into Brucella that differentiated them from Ochrobactrum and allowed the stepwise acquisition of virulence factors that include a type IV secretion system, a perosamine-based O antigen, and systems for sequestering metal ions that are absent in progenitors. Subsequent radiation within the core Brucella resulted in lineages that appear to have evolved within their preferred mammalian hosts, restricting their virulence to become stealth pathogens capable of causing long-term chronic infections.  相似文献   
66.

Background and Aims

Recent phylogenetic analysis has placed the aquatic family Hydatellaceae as an early-divergent angiosperm. Understanding seed dormancy, germination and desiccation tolerance of Hydatellaceae will facilitate ex situ conservation and advance hypotheses regarding angiosperm evolution.

Methods

Seed germination experiments were completed on three species of south-west Australian Hydatellaceae, Trithuria austinensis, T. bibracteata and T. submersa, to test the effects of temperature, light, germination stimulant and storage. Seeds were sectioned to examine embryo growth during germination in T. austinensis and T. submersa.

Key Results

Some embryo growth and cell division in T. austinensis and T. submersa occurred prior to the emergence of an undifferentiated embryo from the seed coat (‘germination’). Embryo differentiation occurred later, following further growth and a 3- to 4-fold increase in the number of cells. The time taken to achieve 50 % of maximum germination for seeds on water agar was 50, 35 and 37 d for T. austinensis, T bibracteata and T. submersa, respectively.

Conclusions

Seeds of Hydatellaceae have a new kind of specialized morphophysiological dormancy in which neither root nor shoot differentiates until after the embryo emerges from the seed coat. Seed biology is discussed in relation to early angiosperm evolution, together with ex situ conservation of this phylogenetically significant group.  相似文献   
67.
68.
In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1(AQ) allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps.  相似文献   
69.
Analysis of N‐glycans is often performed by LC coupled to fluorescence detection. The N‐glycans are usually labeled by reductive amination with a fluorophore containing a primary amine to allow fluorescence detection. Moreover, many of the commonly applied labels also allow improved mass spectrometric detection of oligosaccharides. For reductive amination, the amine group of the label reacts with the reducing‐end aldehyde group of the oligosaccharide to form a Schiff base, which is reduced to a secondary amine. Here, we propose the use of 2‐picoline‐borane as the reducing agent, as a non‐toxic alternative to the extensively used, but toxic sodium cyanoborohydride. Using dextran oligosaccharides and plasma N‐glycans, we demonstrate similar labeling efficacies for 2‐picoline‐borane and sodium cyanoborohydride. Therefore, 2‐picoline‐borane is a non‐toxic alternative to sodium cyanoborohydride for the labeling of oligosaccharides.  相似文献   
70.
High-throughput methods for oligosaccharide analysis are required when searching for glycan-based biomarkers. Next to mass spectrometry-based methods, which allow fast and reproducible analysis of such compounds, further separation-based techniques are needed, which allow for quantitative analysis. Here, an optimized sample preparation method for N-glycan-profiling by multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) was developed, enabling high-throughput glycosylation analysis. First, glycans are released enzymatically from denatured plasma glycoproteins. Second, glycans are labeled with APTS using 2-picoline borane as a nontoxic and efficient reducing agent. Reaction conditions are optimized for a high labeling efficiency, short handling times, and only limited loss of sialic acids. Third, samples are subjected to hydrophilic interaction chromatography (HILIC) purification at the 96-well plate format. Subsequently, purified APTS-labeled N-glycans are analyzed by CGE-LIF using a 48-capillary DNA sequencer. The method was found to be robust and suitable for high-throughput glycan analysis. Even though the method comprises two overnight incubations, 96 samples can be analyzed with an overall labor allocation time of 2.5 h. The method was applied to serum samples from a pregnant woman, which were sampled during first, second, and third trimesters of pregnancy, as well as 6 weeks, 3 months, and 6 months postpartum. Alterations in the glycosylation patterns were observed with gestation and time after delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号