首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1225篇
  免费   52篇
  国内免费   1篇
  2023年   7篇
  2022年   11篇
  2021年   39篇
  2020年   20篇
  2019年   25篇
  2018年   33篇
  2017年   28篇
  2016年   36篇
  2015年   51篇
  2014年   53篇
  2013年   80篇
  2012年   103篇
  2011年   80篇
  2010年   37篇
  2009年   46篇
  2008年   49篇
  2007年   64篇
  2006年   49篇
  2005年   56篇
  2004年   33篇
  2003年   41篇
  2002年   23篇
  2001年   16篇
  2000年   21篇
  1999年   10篇
  1998年   7篇
  1997年   7篇
  1996年   11篇
  1995年   9篇
  1994年   6篇
  1992年   11篇
  1990年   6篇
  1987年   9篇
  1986年   7篇
  1985年   8篇
  1984年   7篇
  1978年   6篇
  1977年   7篇
  1976年   10篇
  1975年   6篇
  1974年   8篇
  1973年   11篇
  1972年   9篇
  1971年   14篇
  1970年   16篇
  1969年   12篇
  1968年   14篇
  1967年   11篇
  1966年   14篇
  1965年   7篇
排序方式: 共有1278条查询结果,搜索用时 31 毫秒
61.
62.
Although the peptide C(alpha)H group has historically not been thought to form hydrogen bonds within proteins, ab initio quantum calculations show it to be a potent proton donor. Its binding energy to a water molecule lies in the range between 1.9 and 2.5 kcal/mol for nonpolar and polar amino acids; the hydrogen bond (H-bond) involving the charged lysine residue is even stronger than a conventional OH..O interaction. The preferred H-bond lengths are quite uniform, about 3.32 A. Formation of each interaction results in a downfield shift of the bridging hydrogen's chemical shift and a blue shift in the C(alpha)H stretching frequency, potential diagnostics of the presence of such an H-bond within a protein.  相似文献   
63.
Increased blood glucose in diabetes mellitus stimulates nonenzymatic glycosylation of several proteins, including haemoglobin. Although iron is tightly bound to haemoglobin, it is liberated under specific circumstances yielding free reactive iron. Studies with purified haemoglobin from normal individuals and diabetic patients revealed that concentration of free iron was significantly higher in the latter cases and increased progressively with extent of the disease. In vitro glycosylation of haemoglobin also led to increase in release of iron from protein. This increase in free iron, acting as a Fenton reagent, might produce free radicals, which, in turn might be causing oxidative stress in diabetes.  相似文献   
64.
In vivo as well as in vitro supply of sodium arsenate inhibited the 5-Amino levulinic acid dehydratase (5-aminolevulinate-hydrolyase EC 4.2.1.24, ALAD) activity in excised etiolated maize leaf segments during greening. The percent inhibition of enzyme activity by arsenate (As) was reduced by the supply of KNO3, but it was increased by the glutamine and GSH. Various inhibitors, such as, chloramphenicol, cycloheximide and LA, decreased the % inhibition of enzyme activity by As. The % inhibition of enzyme activity was also reduced by in vivo supply of DTNB. The enzyme activity was reduced substantially by in vitro inclusion of LA, both in the absence and presence of As. In vitro inclusion of DTNB and GSH inhibited the enzyme activity extracted from leaf segments treated without arsenate (-As enzyme) and caused respectively no effect and stimulatory effect on arsenate treated enzyme (+As enzyme). Increasing concentration of ALA during assay increased the activity of -As enzyme and +As enzyme to different extent, but double reciprocal plots for both the enzymes were biphasic and yielded distinct S0.5 values for the two enzymes (-As enzyme, 40 micromol/L and +As enzyme, 145 micromol/L) at lower concentration range of ALA only. It is suggested that As inhibits ALAD activity in greening maize leaf segments by affecting its thiol groups and/or binding of ALA to the enzyme.  相似文献   
65.
66.
Malachite Green (MG), consisting of green crystals with a metallic lustre, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumour promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. We have earlier reported the malignant transformation of Syrian hamster embryo (SHE) cells in primary culture by MG. In this study, we have studied the mitogen activated protein (MAP) kinase signal transduction pathway in preneoplastic cells induced by MG. Western blots of MG induced preneoplastic cells showed no phosphorylation of ERK1, an increased phosphoactive ERK2 associated with a decreased expression of phosphoactive JNK2. However, total forms of ERKs, JNKs and p38 Kinases showed similar levels of expression in control and preneoplastic SHE cells. Indirect immunofluorescence studies have shown a distinct nuclear localisation of phosphoactive ERKs in MG induced preneoplastic cells. Flow cytometric analysis showed an increase of S-phase cells in preneoplastic cells compared to control SHE cells. The present study indicates that hyperphosphorylation of ERK2, decreased JNK2 phosphorylation and an increase in S-phase cells seems to be the early changes associated with the MG induced malignant transformation of SHE cells in primary culture.  相似文献   
67.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   
68.
Kar AK  Roy P 《Journal of virology》2003,77(21):11347-11356
The VP6 protein of bluetongue virus possesses a number of activities, including nucleoside triphosphatase, RNA binding, and helicase activity (N. Stauber, J. Martinez-Costas, G. Sutton, K. Monastyrskaya, and P. Roy, J. Virol. 71:7220-7226, 1997). Although the enzymatic functions of the protein have been documented, a detailed structure and function study has not been completed and the oligomeric form of the protein in solution has not been described. In this study, we have characterized VP6 activity by creating site-directed mutations in the putative functional helicase domains. Mutant proteins were expressed at high levels in an insect cell by using recombinant baculoviruses purified and analyzed for ATP binding, ATP hydrolysis, and RNA unwinding activities. UV cross-linking experiments indicated that the lysine residue in the conserved motif AXXGXGK(110)V is directly involved in ATP binding, whereas mutant R(205)Q in the arginine-rich motif ER(205)XGRXXR bound ATP at a level comparable to that of the wild-type protein. The RNA binding activity was drastically altered in the R(205)Q mutant and was also affected in the K(110)N mutant. Helicase activity was altered in both mutants. The mutation E(157)N in the DEXX sequence, presumed to act as a Walker B motif, showed an intermediate activity, implying that this motif does not play a crucial role in VP6 function. Purified protein demonstrated stable oligomers with a ring-like morphology in the presence of nucleic acids similar to those shown by other helicases. Gel filtration chromatography, native gel electrophoresis, and glycerol gradient analysis clearly indicated multiple oligomeric forms of VP6.  相似文献   
69.
Scavenger receptor class B, type I (SRBI) is a key regulator of high density lipoprotein (HDL) metabolism. It facilitates the efflux of cholesterol from cells in peripheral tissues to HDL and mediates the selective uptake of cholesteryl esters from HDL in the liver. We investigated the effects of SRBI deficiency in the arterial wall and in the liver using SRBI-deficient mice and wild-type littermates fed a Western-type diet. The SRBI-deficient mice showed massive accumulation of cholesterol-rich HDL in the circulation, reflecting impaired delivery to the liver. Strikingly, SRBI deficiency did not alter hepatic cholesterol (ester) content nor did it affect the expression of key regulators of hepatic cholesterol homeostasis, including HMG-CoA reductase, the low density lipoprotein receptor, and cholesterol 7alpha-hydroxylase. However, a approximately 40% reduction in biliary cholesterol content was observed, and the expression of ABCG8 and ABCG5, ATP half-transporters implicated in the transport of sterols from the liver to the bile, was attenuated by 70 and 35%, respectively. In contrast to the situation in the liver, SRBI deficiency did result in lipid deposition in the aorta and atherosclerosis. Vascular mRNA analysis showed increased expression of inflammatory markers as well as of genes involved in cellular cholesterol homeostasis. Our data show that, although hepatic cholesterol homeostasis is maintained upon feeding a Western-type diet, SRBI deficiency is associated with de-regulation of cholesterol homeostasis in the arterial wall that results in an increased susceptibility to atherosclerosis.  相似文献   
70.
Hepatic cholesterol(ester) uptake from serum coupled to intracellular processing and biliary excretion are important features in the removal of excess cholesterol from the body. ATP-binding cassette (ABC) transporters play an important role in hepatic cholesterol transport. The liver consists of different cell types, and ABC transporters may exert different physiological functions dependent on the individual cell type. Therefore, in the current study, using real time PCR we compared the mRNA expression of ABC transporters and genes involved in the regulation of cholesterol metabolism in liver parenchymal, endothelial, and Kupffer cells. It appears that liver parenchymal cells contain high expression levels compared with endothelial and Kupffer cells of scavenger receptor class BI ( approximately 3-fold), peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma (8-20-fold), cholesterol 7alpha-hydroxylase A1 (>100-fold), and ABCG5/G8 ( approximately 5-fold). Liver endothelial cells show a high expression of cholesterol 27-hydroxylase, liver X receptor (LXR)beta, PPARdelta, and ABCG1, suggesting a novel specific role for these genes in endothelial cells. In Kupffer cells, the expression level of LXRalpha, ABCA1, and in particular ABCG1 is high, leading to an ABCG1 mRNA expression level that is 70-fold higher than in parenchymal cells. It can be calculated that 51% of the total liver ABCG1 expression resides in Kupffer cells and 24% in endothelial cells, suggesting an intrahepatic-specific role for ABCG1 in Kupffer and endothelial cells. Because of a specific stimulation of ABCG1 in parenchymal cells by a high cholesterol diet, the contribution of parenchymal cells to the total liver increased from 25 to 60%. Our data indicate that for studies of the role of ABC transporters and their regulation in liver, their cellular localization should be taken into account, allowing proper interpretation of metabolic changes, which are directly related to their (intra)cellular expression level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号