首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   98篇
  2021年   7篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   18篇
  2014年   19篇
  2013年   34篇
  2012年   26篇
  2011年   31篇
  2010年   25篇
  2009年   15篇
  2008年   25篇
  2007年   26篇
  2006年   25篇
  2005年   20篇
  2004年   24篇
  2003年   10篇
  2002年   17篇
  2001年   20篇
  2000年   12篇
  1999年   19篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1992年   11篇
  1991年   10篇
  1990年   6篇
  1989年   11篇
  1988年   14篇
  1987年   9篇
  1986年   6篇
  1985年   16篇
  1984年   8篇
  1983年   8篇
  1982年   7篇
  1981年   10篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1976年   6篇
  1974年   6篇
  1973年   9篇
  1972年   6篇
  1971年   4篇
  1969年   14篇
  1968年   8篇
  1967年   5篇
  1966年   8篇
  1965年   4篇
排序方式: 共有664条查询结果,搜索用时 140 毫秒
71.
72.
H9, H10, and H11 are major dominant resistance genes in wheat, expressing antibiosis against Hessian fly [(Hf) Mayetiola destructor (Say)] larvae. Previously, H9 and H10 were assigned to chromosome 5A and H11 to 1A. The objectives of this study were to identify simple-sequence-repeat (SSR) markers for fine mapping of these genes and for marker-assisted selection in wheat breeding. Contrary to previous results, H9 and H10 did not show linkage with SSR markers on chromosome 5A. Instead, H9, H10, and H11 are linked with SSR markers on the short arm of chromosome 1A. Both H9 and H10 are tightly linked to flanking markers Xbarc263 and Xcfa2153 within a genetic distance of 0.3–0.5 cM. H11 is tightly linked to flanking markers Xcfa2153 and Xbarc263 at genetic distances of 0.3 cM and 1.7 cM. Deletion bin mapping assigned these markers and genes to the distal 14% of chromosome arm 1AS, where another Hf-resistance gene, Hdic (derived from emmer wheat), was also mapped previously. Marker polymorphism results indicated that a small terminal segment of chromosome 1AS containing H9 or H10 was transferred from the donor parent to the wheat lines Iris or Joy, and a small intercalary fragment carrying H11 was transferred from the resistant donor to the wheat line Karen. Our results suggest that H9, H10, H11, Hdic, and the previously identified H9- or H11-linked genes (H3, H5, H6, H12, H14, H15, H16, H17, H19, H28, and H29) may compose a cluster (or family) of Hf-resistance genes in the distal gene-rich region of wheat chromosome 1AS; and H10 most likely is the same gene as H9.Mention of commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   
73.
The family of proteins accountable for the intracellular movement of lipids is characterized by a 10-stranded beta-barrel that forms an internalized cavity varying in size and binding preferences. The loop connecting beta-strands E and F (the fifth and sixth strands) is the most striking conformational difference between adipocyte lipid binding protein (ALBP; fatty acids) and cellular retinoic acid binding protein type I (CRABP I). A three-residue mutation was made in wild-type (WT)-ALBP [ALBP with a three-residue mutation (EF-ALBP)] to mimic CRABP I. Crystal structures of ligand-free and EF-ALBP with bound oleic acid were solved to resolutions of 1.5 A and 1.7 A, respectively, and compared with previous studies of WT-ALBP. The changes in three residues of one loop of the protein appear to have altered the positioning of the C18 fatty acid, as observed in the electron density of EF-ALBP. The crystallographic studies made it possible to compare the protein conformation and ligand positioning with those found in the WT protein. Although the cavity binding sites in both the retinoid and fatty acid binding proteins are irregular, the ligand atoms appear to favor a relatively planar region of the cavities. Preliminary chemical characterization of the mutant protein indicated changes in some binding properties and overall protein stability.  相似文献   
74.
The development, progression, and recurrence of autoimmune diseases are frequently driven by a group of participatory autoantigens. We identified and characterized novel autoantigens by analyzing the autoantibody binding pattern from horses affected by spontaneous equine recurrent uveitis to the retinal proteome. Cellular retinaldehyde-binding protein (cRALBP) had not been described previously as autoantigen, but subsequent characterization in equine recurrent uveitis horses revealed B and T cell autoreactivity to this protein and established a link to epitope spreading. We further immunized healthy rats and horses with cRALBP and observed uveitis in both species with typical tissue lesions at cRALBP expression sites. The autoantibody profiling outlined here could be used in various autoimmune diseases to detect autoantigens involved in the dynamic spreading cascade or serve as predictive markers.  相似文献   
75.
The objective of this study was to establish reference baseline data for hematologic, biochemical, and cytologic findings in apparently healthy Atlantic bottlenose dolphins (Tursiops truncatus) inhabiting the Indian River Lagoon, Florida, USA. Sixty-two dolphins were captured, examined, and released during June 2003 and June 2004. Mean, standard deviation, and range were calculated for each parameter, and values for which published data were available, were close to or within the ranges previously reported for free-ranging bottlenose dolphins. No pathologic abnormalities were found in fecal and blowhole cytologic specimens. However, 24% (7/29) of the dolphins examined in 2003 had evidence of gastritis, which was graded as severe in 14% (4/29) of the cases. In 2004, only 4% (1/24) of dolphins sampled had evidence of mild or moderate gastritis; no severe inflammation was present. Dolphins with evidence of gastritis were 8 yr of age or older and predominantly male. Several statistically significant differences were found between males and females, between pregnant and nonpregnant animals, and between juveniles (<6 yr) and adults (> or =6 yr). However, the values remained within the established ranges for this species, and the differences were not likely to be of clinical significance.  相似文献   
76.
77.

Background

Long-lasting insecticidal nets (LLINs) reduce malaria transmission by protecting individuals from infectious bites, and by reducing mosquito survival. In recent years, millions of LLINs have been distributed across sub-Saharan Africa (SSA). Over time, LLINs decay physically and chemically and are destroyed, making repeated interventions necessary to prevent a resurgence of malaria. Because its effects on transmission are important (more so than the effects of individual protection), estimates of the lifetime of mass distribution rounds should be based on the effective length of epidemiological protection.

Methods

Simulation models, parameterised using available field data, were used to analyse how the distribution's effective lifetime depends on the transmission setting and on LLIN characteristics. Factors considered were the pre-intervention transmission level, initial coverage, net attrition, and both physical and chemical decay. An ensemble of 14 stochastic individual-based model variants for malaria in humans was used, combined with a deterministic model for malaria in mosquitoes.

Results

The effective lifetime was most sensitive to the pre-intervention transmission level, with a lifetime of almost 10 years at an entomological inoculation rate of two infectious bites per adult per annum (ibpapa), but of little more than 2 years at 256 ibpapa. The LLIN attrition rate and the insecticide decay rate were the next most important parameters. The lifetime was surprisingly insensitive to physical decay parameters, but this could change as physical integrity gains importance with the emergence and spread of pyrethroid resistance.

Conclusions

The strong dependency of the effective lifetime on the pre-intervention transmission level indicated that the required distribution frequency may vary more with the local entomological situation than with LLIN quality or the characteristics of the distribution system. This highlights the need for malaria monitoring both before and during intervention programmes, particularly since there are likely to be strong variations between years and over short distances. The majority of SSA's population falls into exposure categories where the lifetime is relatively long, but because exposure estimates are highly uncertain, it is necessary to consider subsequent interventions before the end of the expected effective lifetime based on an imprecise transmission measure.  相似文献   
78.

Background

The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture.

Methodology/Principal Findings

In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam.

Conclusions/Significance

We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.  相似文献   
79.
Participants with ankle instability demonstrate more foot inversion during the stance phase of gait than able-bodied subjects. Invertor excitation, coupled with evertor inhibition may contribute to this potentially injurious position. The purpose of this experiment was to examine evertor/invertor muscle activation and foot COP trajectory during walking in participants with functional ankle instability (FI). Twelve subjects were identified with FI and matched to healthy controls. Tibialis anterior (TA) and peroneus longus (PL) electromyography (EMG), as well as COP, were recorded during walking. Functional analyses were used to detect differences between FI and control subjects with respect to normalized EMG and COP trajectory during walking. Relative to matched controls, COP trajectory was more laterally deviated in the FI group from 20% to 90% of the stance phase. TA activation was greater in the FI group from 15% to 30% and 45% to 70% of stance. PL activation was greater in the FI group at initial heel contact and toe off and trended lower from 20% to 40% of stance in the FI group. Altered motor strategies appear to contribute to COP deviations in FI participants and may increase the susceptibility to repeated ankle inversion injury.  相似文献   
80.
Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle''s legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号