首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   98篇
  2021年   7篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   18篇
  2014年   19篇
  2013年   34篇
  2012年   26篇
  2011年   31篇
  2010年   25篇
  2009年   15篇
  2008年   25篇
  2007年   26篇
  2006年   25篇
  2005年   20篇
  2004年   24篇
  2003年   10篇
  2002年   17篇
  2001年   20篇
  2000年   12篇
  1999年   19篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1992年   11篇
  1991年   10篇
  1990年   6篇
  1989年   11篇
  1988年   14篇
  1987年   9篇
  1986年   6篇
  1985年   16篇
  1984年   8篇
  1983年   8篇
  1982年   7篇
  1981年   10篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1976年   6篇
  1974年   6篇
  1973年   9篇
  1972年   6篇
  1971年   4篇
  1969年   14篇
  1968年   8篇
  1967年   5篇
  1966年   8篇
  1965年   4篇
排序方式: 共有664条查询结果,搜索用时 187 毫秒
31.
32.
The ability to detect specific nucleic acid sequences allows for a wide range of applications such as the identification of pathogens, clinical diagnostics, and genotyping. CRISPR-Cas proteins Cas12a and Cas13a are RNA-guided endonucleases that bind and cleave specific DNA and RNA sequences, respectively. After recognition of a target sequence, both enzymes activate indiscriminate nucleic acid cleavage, which has been exploited for sequence-specific molecular diagnostics of nucleic acids. Here, we present a label-free detection approach that uses a readout based on solution turbidity caused by liquid-liquid phase separation (LLPS). Our approach relies on the fact that the LLPS of oppositely charged polymers requires polymers to be longer than a critical length. This length dependence is predicted by the Voorn-Overbeek model, which we describe in detail and validate experimentally in mixtures of polynucleotides and polycations. We show that the turbidity resulting from LLPS can be used to detect the presence of specific nucleic acid sequences by employing the programmable CRISPR-nucleases Cas12a and Cas13a. Because LLPS of polynucleotides and polycations causes solutions to become turbid, the detection of specific nucleic acid sequences can be observed with the naked eye. We furthermore demonstrate that there is an optimal polynucleotide concentration for detection. Finally, we provide a theoretical prediction that hints towards possible improvements of an LLPS-based detection assay. The deployment of LLPS complements CRISPR-based molecular diagnostic applications and facilitates easy and low-cost nucleotide sequence detection.  相似文献   
33.
Abstract

We report the chemical synthesis of phosphoramidite 8, containing a spin labeled analog of deoxycytidine, C?, and its incorporation into synthetic DNA. The EPR characteristics of the resulting DNAs indicated that the motion of the spin label was well-correlated with the uniform modes of the macromolecule, but that correlation of the spin label with internal motion was less effective than that achieved using a spin labeled quinolone, Q.  相似文献   
34.

Background

In fibrotic lung diseases, expression of caveolin-1 is decreased in fibroblasts and monocytes. The effects of this deficiency are reversed by treating cells or animals with the caveolin-1 scaffolding domain peptide (CSD, amino acids 82–101 of caveolin-1) which compensates for the lack of caveolin-1. Here we compare the function of CSD subdomains (Cav-A, Cav-B, Cav-C, Cav-AB, and Cav-BC) and mutated versions of CSD (F92A and T90A/T91A/F92A).

Methods

Migration toward the chemokine CXCL12 and the associated expression of F-actin, CXCR4, and pSmad 2/3 were studied in monocytes from healthy donors and SSc patients. Fibrocyte differentiation was studied using PBMC from healthy donors and SSc patients. Collagen I secretion and signaling were studied in fibroblasts derived from the lung tissue of healthy subjects and SSc patients.

Results

Cav-BC and CSD at concentrations as low as 0.01 μM inhibited the hypermigration of SSc monocytes and TGFβ-activated Normal monocytes and the differentiation into fibrocytes of SSc and Normal monocytes. While CSD also inhibited the migration of poorly migrating Normal monocytes, Cav-A (and other subdomains to a lesser extent) promoted the migration of Normal monocytes while inhibiting the hypermigration of TGFβ-activated Normal monocytes. The effects of versions of CSD on migration may be mediated in part via their effects on CXCR4, F-actin, and pSmad 2/3 expression. Cav-BC was as effective as CSD in inhibiting fibroblast collagen I and ASMA expression and MEK/ERK signaling. Cav-C and Cav-AB also inhibited collagen I expression, but in many cases did not affect ASMA or MEK/ERK. Cav-A increased collagen I expression in scleroderma lung fibroblasts. Full effects on fibroblasts of versions of CSD required 5 μM peptide.

Conclusions

Cav-BC retains most of the anti-fibrotic functions of CSD; Cav-A exhibits certain pro-fibrotic functions. Results obtained with subdomains and mutated versions of CSD further suggest that the critical functional residues in CSD depend on the cell type and readout being studied. Monocytes may be more sensitive to versions of CSD than fibroblasts and endothelial cells because the baseline level of caveolin-1 in monocytes is much lower than in these other cell types.  相似文献   
35.
For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious effects.  相似文献   
36.
We present a new parallelised controller for steering an arbitrary geometric region of a molecular dynamics (MD) simulation towards a desired thermodynamic and hydrodynamic state. We show that the controllers may be applied anywhere in the domain to set accurately an initial MD state, or solely at boundary regions to prescribe non-periodic boundary conditions (PBCs) in MD simulations. The mean molecular structure and velocity autocorrelation function remain unchanged (when sampled a few molecular diameters away from the constrained region) when compared with those distributions measured using PBCs. To demonstrate the capability of our new controllers, we apply them as non-PBCs in parallel to a complex MD mixing nano-channel and in a hybrid MD continuum simulation with a complex coupling region. The controller methodology is easily extendable to polyatomic MD fluids.  相似文献   
37.
Non-equilibrium molecular dynamics simulations are performed to investigate how changing the number of structural defects in the wall of a (7,7) single-walled carbon nanotube (CNT) affects water transport and internal fluid dynamics. Structural defects are modelled as vacancy sites (missing carbon atoms). We find that, while fluid flow rates exceed continuum expectations, increasing numbers of defects lead to significant reductions in fluid velocity and mass flow rate. The inclusion of such defects causes a reduction in the water density inside the nanotubes and disrupts the nearly frictionless water transport commonly attributed to CNTs.  相似文献   
38.
A computational pre-processing tool for generating initial configurations of molecules for molecular dynamics simulations in geometries described by a mesh of unstructured arbitrary polyhedra is described. The mesh is divided into separate zones and each can be filled with a single crystal lattice of atoms. Each zone is filled by creating an expanding cube of crystal unit cells, initiated from an anchor point for the lattice. Each unit cell places the appropriate atoms for the user-specified crystal structure and orientation. The cube expands until the entire zone is filled with the lattice; zones with concave and disconnected volumes may be filled. When the mesh is spatially decomposed into portions for distributed parallel processing, each portion may be filled independently, meaning that the entire molecular system never needs to fit onto a single processor, allowing very large systems to be created. The computational time required to fill a zone with molecules scales linearly with the number of cells in the zone for a fixed number of molecules, and better than linearly with the number of molecules for a fixed number of mesh cells. Our tool, molConfig, has been implemented in the open source C++ code OpenFOAM.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号