首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   61篇
  664篇
  2024年   2篇
  2023年   4篇
  2022年   2篇
  2021年   13篇
  2020年   8篇
  2019年   5篇
  2018年   26篇
  2017年   22篇
  2016年   23篇
  2015年   40篇
  2014年   36篇
  2013年   36篇
  2012年   70篇
  2011年   55篇
  2010年   54篇
  2009年   32篇
  2008年   44篇
  2007年   56篇
  2006年   31篇
  2005年   24篇
  2004年   23篇
  2003年   24篇
  2002年   18篇
  2001年   2篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
排序方式: 共有664条查询结果,搜索用时 0 毫秒
131.
Manipulation by parasites is a catchy concept that has been applied to a large range of phenotypic alterations brought about by parasites in their hosts. It has, for instance, been suggested that the carotenoid-based colour of acanthocephalan cystacanths is adaptive through increasing the conspicuousness of infected intermediate hosts and, hence, their vulnerability to appropriate final hosts such as fish predators. We revisited the evidence in favour of adaptive coloration of acanthocephalan parasites in relation to increased trophic transmission using the crustacean amphipod Gammarus pulex and two species of acanthocephalans, Pomphorhynchus laevis and Polymorphus minutus. Both species show carotenoid-based colorations, but rely, respectively, on freshwater fish and aquatic bird species as final hosts. In addition, the two parasites differ in the type of behavioural alteration brought to their common intermediate host. Pomphorhynchus laevis reverses negative phototaxis in G. pulex, whereas P. minutus reverses positive geotaxis. In aquaria, trout showed selective predation for P. laevis-infected gammarids, whereas P. minutus-infected ones did not differ from uninfected controls in their vulnerability to predation. We tested for an effect of parasite coloration on increased trophic transmission by painting a yellow-orange spot on the cuticle of uninfected gammarids and by masking the yellow-orange spot of infected individuals with inconspicuous brown paint. To enhance realism, match of colour between painted mimics and true parasite was carefully checked using a spectrometer. We found no evidence for a role of parasite coloration in the increased vulnerability of gammarids to predation by trout. Painted mimics did not differ from control uninfected gammarids in their vulnerability to predation by trout. In addition, covering the place through which the parasite was visible did not reduce the vulnerability of infected gammarids to predation by trout. We discuss alternative evolutionary explanations for the origin and maintenance of carotenoid-based colorations in acanthocephalan parasites.  相似文献   
132.
133.
134.
Few methods for quantifying the dynamics of temporal processes are readily applicable to spatially extended systems when equations governing the motion are unknown. The objective of this paper is to illustrate how the MRP-RQA (multivariate recurrence plot-recurrence quantification analysis) approach may serve to characterize ecosystems driven by both deterministic and stochastic forces. The strength of the MRP-RQA approach resides in its independence from constraining assumptions regarding outliers, noise, stationarity and transients. Its utility is demonstrated by means of two spatiotemporal series (summer and spring datasets) of light intensity variations in an old growth forest ecosystem. Results revealed qualitative differences in homogeneity, transiency, and drift typologies between the MRPs derived from each dataset. RQA estimates of determinism and Kolmogorov entropy supported the idea that mixed chaotic–stochastic dynamics may be common in mesoscale forest habitats. Advantages and inconveniences of the MRP-RQA approach are also discussed in the more general context of monitoring ecosystems.  相似文献   
135.
The developing fetus is protected from external environmental influences by maternal tissues. However, these structures have a limited elasticity, such that the fetus must grow in a confined space, constraining its size at the end of pregnancy. Can these constraints modify the morphology of the fetal skeleton? The intensity of these constraints increases between 5 months and birth, making it the most appropriate period to address this question. A sample of 89 fetal femora was analyzed, and results provide evidence that during this period, the torsion of the femoral shaft (quantified by means of a new three‐dimensional method) increases gradually. Two explanations were considered: this increase could signal effects of constraints induced by the intrauterine cavity, developmental patterning, or some combination of these two. Different arguments tend to support the biomechanical explanation, rather than a programming pattern formation. Indeed, the identification of the femur as a first degree lever, created by the hyperflexion of the fetal lower limbs on the pelvis, could explain the increase in femoral shaft torsion during prenatal life. A comparison with femora of infants is in accordance with this mechanical interpretation, which is possible through bone modeling/remodeling. Although genetic and epigenetic mechanisms may regulate timing of fetal development, our data suggest that at birth, the fetal skeleton also has an intrauterine mechanical history through adaptive bone plasticity. Am J Phys Anthropol, 2011. © 2011Wiley‐Liss, Inc.  相似文献   
136.
Muscle immobilization leads to modification in its fast/slow contractile phenotype. Since the properties of voltage-gated sodium channels (Na(v)) are different between "fast" and "slow" muscles, we studied the effects of immobilization on the contractile properties and the Na(v) of rat peroneus longus (PL). The distal tendon of PL was cut and fixed to the adjacent bone at neutral muscle length. After 4 or 8 wk of immobilization, the contractile and the Na(v) properties were studied and compared with muscles from control animals (Student's t-test). After 4 wk of immobilization, PL showed a faster phenotype with a rightward shift of the force-frequency curve and a decrease in both the Burke's index of fatigability and the tetanus-to-twitch ratio. These parameters showed opposite changes between 4 and 8 wk of immobilization. The maximal sodium current in 4-wk immobilized fibers was higher compared with that of control fibers (11.5 ± 1.2 vs. 7.8 ± 0.8 nA, P = 0.008), with partial recovery to the control values in 8-wk immobilized fibers (8.6 ± 0.7 nA, P = 0.48). In the presence of tetrodotoxin, the maximal residual sodium current decreased continuously throughout immobilization. Using the Western blot analysis, Na(v)1.4 expression showed a transient increase in 4-wk muscle, whereas Na(v)1.5 expression decreased during immobilization. Our results indicate that a muscle immobilized at optimal functional length with the preservation of neural inputs exhibits a transient fast phenotype conversion. Na(v)1.4 expression and current are related to the contractile phenotype variation.  相似文献   
137.
A good comprehension of the reactivity of peptides in aqueous solution is fundamental in prebiotic chemistry, namely for understanding their stability and behavior in primitive oceans. Relying on the stereoselectivity of the involved reactions, there is a huge interest in amino acid derivatives for explaining the spontaneous emergence of homochirality on primitive Earth. The corresponding kinetic and thermodynamic parameters are however still poorly known in the literature. We studied the reactivity of alanylalanine in acidic to neutral conditions as a model system. The hydrolysis into amino acids, the epimerization of the N-terminal residue, and the cyclization into diketopiperazine could be successfully identified and studied. This kinetic investigation highlighted interesting behaviors. Complex mechanisms were observed in very acidic conditions. The relative kinetic stability of the diastereoisomers of the dipeptide is highly dependent of the pH, with the possibility to dynamically destabilize the thermodynamically more stable diastereoisomers. The existence of the cyclization of dipeptides adds complexity to the system. On one hand it brings additional stereoselectivities; on the other hand fast racemization of heterochiral dipeptides is obtained.  相似文献   
138.
Nycthemeral rhythm is an important biological trait that allows animals to escape predation and competition and, conversely, to coincide with mutualists. Although laboratory studies have shown that the rhythm depends on both endogenous factors and cyclic environmental cues, the latter is often poorly understood, particularly in the wild. Because insects are mostly ectothermal organisms, their activity rhythm is often thought to depend directly on ground temperature. In Mediterranean habitats, Cataglyphis ants are well known for their unusual thermoresistance, allowing them to forage in summer at the central hours of the day when the ground reaches temperatures that are lethal to their competitors. However, we show that the rhythm of Cataglyphis floricola in south‐western Spain is governed by light cues rather than by temperature. First, variations in ant traffic at the nest entrance were better explained by solar elevation angle than by ground temperature on both seasonal and daily scales. Second, if ants waited for the ground to reach a threshold temperature to start their activity, we would expect similar temperatures regardless of the opening hour. However, we found a significant increase in ground temperature as opening hour got later in the day. Third, by using a simple experimental set‐up that increased the apparent solar elevation over the nest entrance, we provoked a delay of nest closure time. We discuss the relevance of these results with respect to the life history of Cataglyphis species and their possible consequences in relation to global warming.  相似文献   
139.
Individuals within social groups often show consistent differences in behaviour across time and context. Such interindividual differences and the evolutionary challenge they present have recently generated considerable interest. Social insects provide some of the most familiar and spectacular examples of social groups with large interindividual differences. Investigating these within‐group differences has a long research tradition, and behavioural variability among the workers of a colony is increasingly regarded as fundamental for a key feature of social insects: division of labour. The goal of this review is to illustrate what we know about both the proximate mechanisms underlying behavioural variability among the workers of a colony and its ultimate consequences; and to highlight the many open questions in this research field. We begin by reviewing the literature on mechanisms that potentially introduce, maintain, and adjust the behavioural differentiation among workers. We highlight the fact that so far, most studies have focused on behavioural variability based on genetic variability, provided by e.g. multiple mating of the queen, while other mechanisms that may be responsible for the behavioural differentiation among workers have been largely neglected. These include maturational, nutritional and environmental influences. We further discuss how feedback provided by the social environment and learning and experience of adult workers provides potent and little‐explored sources of differentiation. In a second part, we address what is known about the potential benefits and costs of increased behavioural variability within the workers of a colony. We argue that all studies documenting a benefit of variability so far have done so by manipulating genetic variability, and that a direct test of the effect of behavioural variability on colony productivity has yet to be provided. We emphasize that the costs associated with interindividual variability have been largely overlooked, and that a better knowledge of the cost/benefit balance of behavioural variability is crucial for our understanding of the evolution of the mechanisms underlying the social organization of insect societies. We conclude by highlighting what we believe to be promising but little‐explored avenues for future research on how within‐colony variability has evolved and is maintained. We emphasize the need for comparative studies and point out that, so far, most studies on interindividual variability have focused on variability in individual response thresholds, while the significance of variability in other parameters of individual response, such as probability and intensity of the response, has been largely overlooked. We propose that these parameters have important consequences for the colony response. Much more research is needed to understand if and how interindividual variability is modulated in order to benefit division of labour, homeostasis and ultimately colony fitness in social insects.  相似文献   
140.
The use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These genetic types are usually delimitated using partial sequences located at the 3′end of the SSUrDNA, but typically based on empirical delimitation. Here, we first use patristic genetic distances calculated within and among genetic types of the most common morpho-species to show that intra-type and inter-type genetic distances within morpho-species may significantly overlap, suggesting that genetic types have been sometimes inconsistently defined. We further apply two quantitative and independent methods, ABGD (Automatic Barcode Gap Detection) and GMYC (General Mixed Yule Coalescent) to a dataset of published and newly obtained partial SSU rDNA for a more objective assessment of the species status of these genetic types. Results of these complementary approaches are highly congruent and lead to a molecular taxonomy that ranks 49 genetic types of planktonic foraminifera as genuine (pseudo)cryptic species. Our results advocate for a standardized sequencing procedure allowing homogenous delimitations of (pseudo)cryptic species. On the ground of this revised taxonomic framework, we finally provide an integrative taxonomy synthesizing geographic, ecological and morphological differentiations that can occur among the genuine (pseudo)cryptic species. Due to molecular, environmental or morphological data scarcities, many aspects of our proposed integrative taxonomy are not yet fully resolved. On the other hand, our study opens up the potential for a correct interpretation of environmental sequence datasets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号