首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1512篇
  免费   96篇
  国内免费   1篇
  2023年   7篇
  2022年   13篇
  2021年   28篇
  2020年   14篇
  2019年   11篇
  2018年   31篇
  2017年   28篇
  2016年   47篇
  2015年   55篇
  2014年   95篇
  2013年   94篇
  2012年   115篇
  2011年   110篇
  2010年   81篇
  2009年   58篇
  2008年   80篇
  2007年   72篇
  2006年   81篇
  2005年   71篇
  2004年   41篇
  2003年   50篇
  2002年   42篇
  2001年   39篇
  2000年   24篇
  1999年   24篇
  1998年   12篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1993年   8篇
  1992年   22篇
  1991年   14篇
  1990年   13篇
  1988年   11篇
  1987年   10篇
  1986年   9篇
  1985年   13篇
  1984年   8篇
  1983年   9篇
  1982年   7篇
  1981年   12篇
  1980年   10篇
  1979年   8篇
  1978年   10篇
  1973年   6篇
  1972年   9篇
  1971年   8篇
  1970年   6篇
  1969年   7篇
  1966年   8篇
排序方式: 共有1609条查询结果,搜索用时 62 毫秒
961.
Summary and Conclusions  The present work aimed to characterize transdermal drug delivery systems of pinacidil monohydrate in vivo by monitoring the effect of the TDDS on blood pressure of methyl prednisolone acetate induced hypertensive rats. The blood pressure of rats was measured using a noninvasive rat BP instrument based on cuff tail technique. A significant fall in rat BP (P<.01) was observed in treatment of hypertensive rats with all the formulations, which was maintained for 48 hours. Interformulation comparison revealed that formulation B-4 was the most effective with 37.96% reduction in BP (160.33±4.96 vs 99.44±4.46 mmHg). It was concluded that a single patch application of pinacidil TDDS (B-4) can effectively control hypertension in rats for 2 days. The system holds promise for clinical studies. Publised: January 13, 2006  相似文献   
962.
It is well known that the nervous system has increased susceptibility to methanol intoxication. The present study reveals the effect of methanol intoxication on antioxidant status, lipid peroxidation and DNA integrity in hypothalamic-pituitary-adrenal (HPA) axis organs and spleen. Non-specific and specific immune functions were analyzed. In addition, open field behavior, plasma corticosterone level and blood methanol level were estimated. Male Wistar albino rats were intoxicated with methanol (2.37 g/kg b.wt., i.p.) for 1 day, 15 and 30 days. Administration of methanol showed significant increase in enzymatic (superoxide dismutase, catalase, glutathione peroxidase), non-enzymatic (reduced glutathione and Vitamin C) antioxidants and lipid peroxidation (LPO) in hypothalamus and adrenal gland of day 1 group. However, decrease in enzymatic and non-enzymatic antioxidants with concomitant increase in LPO level were observed in 15 and 30 days groups. Plasma corticosterone level was significantly increased in day 1 and 15 days groups whereas, 30 days methanol intoxication group showed considerable decrease in corticosterone level compared with control animals. Cell-mediated immune response of footpad thickness was significantly decreased with an increased leukocyte migration inhibition. Humoral immune response of antibody titers was elevated in methanol-intoxicated groups. Neutrophil functions, adherence and phagocytic index (PI) were found to be significantly decreases. Furthermore, significant increase in the avidity index and nitro blue tetrozolium reduction was observed in the methanol exposed animals. Day 1 methanol exposed group showed increased PI compared to the control ones. Methanol exposure for 30 days showed an increased DNA fragmentation in the hypothalamus, adrenal glands, and spleen. In conclusion, exposure to methanol-induced oxidative stress disturbs the HPA-axis function altering the level of corticosterone, which lead to varied non-specific and specific immune response in experimental rats.  相似文献   
963.
A large family of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAc Ts) catalyzes the first step of mucin-type protein O-glycosylation by transferring GalNAc to serine and threonine residues of acceptor polypeptides. The acceptor peptide substrate specificity and specific protein targets of the individual ppGalNAc T family members remain poorly characterized and poorly understood, despite the fact that mutations in two individual isoforms are deleterious to man and the fly. In this work a series of oriented random peptide substrate libraries, based on the GAGAXXXTXXXAGAGK sequence motif (where X = randomized positions), have been used to obtain the first comprehensive determination of the peptide substrate specificities of the mammalian ppGalNAc T1 and T2 isoforms. ppGalNAc T-glycosylated random peptides were isolated by lectin affinity chromatography, and transferase amino acid preferences were determined by Edman amino acid sequencing. The results reveal common and unique position-sensitive features for both transferases, consistent with previous reports of the preferences of ppGalNAc T1 and T2. The random peptide substrates also reveal additional specific features that have never been described before that are consistent with the x-ray crystal structures of the two transferases and furthermore are reflected in a data base analysis of in vivo O-glycosylation sites. By using the transferase-specific preferences, optimum and selective acceptor peptide substrates have been generated for each transferase. This approach represents a relatively complete, facile, and reproducible method for obtaining ppGalNAc T peptide substrate specificity. Such information will be invaluable for identifying isoform-specific peptide acceptors, creating isoform-specific substrates, and predicting O-glycosylation sites.  相似文献   
964.
The role of sarcolipin (SLN) in cardiac physiology was critically evaluated by generating a transgenic (TG) mouse model in which the SLN to sarco(endoplasmic)reticulum (SR) Ca(2+) ATPase (SERCA) ratio was increased in the ventricle. Overexpression of SLN decreases SR calcium transport function and results in decreased calcium transient amplitude and rate of relaxation. SLN TG hearts exhibit a significant decrease in rates of contraction and relaxation when assessed by ex vivo work-performing heart preparations. Similar results were also observed with muscle preparations and myocytes from SLN TG ventricles. Interestingly, the inhibitory effect of SLN was partially relieved upon high dose of isoproterenol treatment and stimulation at high frequency. Biochemical analyses show that an increase in SLN level does not affect PLB levels, monomer to pentamer ratio, or its phosphorylation status. No compensatory changes were seen in the expression of other calcium-handling proteins. These studies suggest that the SLN effect on SERCA pump is direct and is not mediated through increased monomerization of PLB or by a change in PLB phosphorylation status. We conclude that SLN is a novel regulator of SERCA pump activity, and its inhibitory effect can be reversed by beta-adrenergic agonists.  相似文献   
965.
Sphingolipids (SLs) play important roles in membrane structure and cell function. Here, we examine the SL requirements of various endocytic mechanisms using a mutant cell line and pharmacological inhibitors to disrupt SL biosynthesis. First, we demonstrated that in Chinese hamster ovary cells we could distinguish three distinct mechanisms of clathrin-independent endocytosis (caveolar, RhoA, and Cdc42 dependent) which differed in cargo, sensitivity to pharmacological agents, and dominant negative proteins. General depletion of SLs inhibited endocytosis by each clathrin-independent mechanism, whereas clathrin-dependent uptake was unaffected. Depletion of glycosphingolipids (GSLs; a subgroup of SLs) selectively blocked caveolar endocytosis and decreased caveolin-1 and caveolae at the plasma membrane. Caveolar endocytosis and PM caveolae could be restored in GSL-depleted cells by acute addition of exogenous GSLs. Disruption of RhoA- and Cdc42-regulated endocytosis by SL depletion was shown to be related to decreased targeting of these Rho proteins to the plasma membrane and could be partially restored by exogenous sphingomyelin but not GSLs. Both the in vivo membrane targeting and in vitro binding to artificial lipid vesicles of RhoA and Cdc42 were shown to be dependent upon sphingomyelin. These results provide the first evidence that SLs are differentially required for distinct mechanisms of clathrin-independent endocytosis.  相似文献   
966.
As large nature reserves occupy only a fraction of the earth’s land surface, conservation biologists are critically examining the role of private lands, habitat fragments, and plantations for conservation. This study in a biodiversity hotspot and endemic bird area, the Western Ghats mountains of India, examined the effects of habitat structure, floristics, and adjacent habitats on bird communities in shade-coffee and cardamom plantations and tropical rainforest fragments. Habitat and birds were sampled in 13 sites: six fragments (three relatively isolated and three with canopy connectivity with adjoining shade-coffee plantations and forests), six plantations differing in canopy tree species composition (five coffee and one cardamom), and one undisturbed primary rainforest control site in the Anamalai hills. Around 3300 detections of 6000 individual birds belonging to 106 species were obtained. The coffee plantations were poorer than rainforest in rainforest bird species, particularly endemic species, but the rustic cardamom plantation with diverse, native rainforest shade trees, had bird species richness and abundance comparable to primary rainforest. Plantations and fragments that adjoined habitats providing greater tree canopy connectivity supported more rainforest and fewer open-forest bird species and individuals than sites that lacked such connectivity. These effects were mediated by strong positive effects of vegetation structure, particularly woody plant variables, cane, and bamboo, on bird community structure. Bird community composition was however positively correlated only to floristic (tree species) composition of sites. The maintenance or restoration of habitat structure and (shade) tree species composition in shade-coffee and cardamom plantations and rainforest fragments can aid in rainforest bird conservation in the regional landscape.  相似文献   
967.
Glycomics-an integrated approach to study structure-function relationships of complex carbohydrates (or glycans)-is an emerging field in this age of post-genomics. Realizing the importance of glycomics, many large scale research initiatives have been established to generate novel resources and technologies to advance glycomics. These initiatives are generating and cataloging diverse data sets necessitating the development of bioinformatic platforms to acquire, integrate, and disseminate these data sets in a meaningful fashion. With the consortium for functional glycomics (CFG) as the model system, this review discusses databases and the bioinformatics platform developed by this consortium to advance glycomics.  相似文献   
968.
A series of sarcosine based indandione hGlyT1 inhibitors has been developed. Optimization of substitution around the indandione and sarcosine moieties has led to highly potent inhibitors at hGlyT1, which show selectivity over a number of other receptors.  相似文献   
969.
Microdamage accumulation leads to reduced bone strength and fracture. Intact, damaged and Rose Bengal stained cortical bone specimens were studied using SEM and EDXA imaging. SEM coupled with EDXA studies showed selective labelling of surface damage due to binding of dye at free lattice sites. A series of novel iodinated X-ray contrast agent were synthesised. These agents demonstrated excellent stability, water solubility and lack of atropisomerism. Preliminary imaging studies, using cone-beam mu-CT, demonstrated their ability to provide visible contrast in the solid state on bone surfaces.  相似文献   
970.
Differential modifications of proliferating cell nuclear antigen (PCNA) determine DNA repair pathways at stalled replication forks. In yeast, PCNA monoubiquitination by the ubiquitin ligase (E3) yRad18 promotes translesion synthesis (TLS), whereas the lysine-63-linked polyubiquitination of PCNA by yRad5 (E3) promotes the error-free mode of bypass. The yRad5-dependent pathway is important to prevent genomic instability during replication, although its exact molecular mechanism is poorly understood. This mechanism has remained totally elusive in mammals because of the lack of apparent RAD5 homologues. We report that a putative tumor suppressor gene, SHPRH, is a human orthologue of yeast RAD5. SHPRH associates with PCNA, RAD18, and the ubiquitin-conjugating enzyme UBC13 (E2) and promotes methyl methanesulfonate (MMS)-induced PCNA polyubiquitination. The reduction of SHPRH by stable short hairpin RNA increases sensitivity to MMS and enhances genomic instability. Therefore, the yRad5/SHPRH-dependent pathway is a conserved and fundamental DNA repair mechanism that protects the genome from genotoxic stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号