首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4127篇
  免费   362篇
  国内免费   3篇
  2024年   2篇
  2023年   14篇
  2022年   13篇
  2021年   58篇
  2020年   37篇
  2019年   46篇
  2018年   63篇
  2017年   54篇
  2016年   103篇
  2015年   195篇
  2014年   212篇
  2013年   250篇
  2012年   344篇
  2011年   330篇
  2010年   205篇
  2009年   187篇
  2008年   237篇
  2007年   288篇
  2006年   304篇
  2005年   280篇
  2004年   239篇
  2003年   241篇
  2002年   215篇
  2001年   43篇
  2000年   41篇
  1999年   50篇
  1998年   77篇
  1997年   44篇
  1996年   34篇
  1995年   39篇
  1994年   28篇
  1993年   29篇
  1992年   29篇
  1991年   21篇
  1990年   21篇
  1989年   12篇
  1988年   11篇
  1987年   14篇
  1986年   11篇
  1985年   10篇
  1984年   11篇
  1983年   10篇
  1982年   12篇
  1981年   8篇
  1979年   8篇
  1978年   2篇
  1977年   3篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有4492条查询结果,搜索用时 31 毫秒
131.
132.
The severe acute respiratory syndrome coronavirus (SARS-CoV) genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.  相似文献   
133.
Extracellular matrix molecules--including chondroitin sulfate proteoglycans, hyaluronan, and tenascin-R--are enriched in perineuronal nets (PNs) associated with subsets of neurons in the brain and spinal cord. In the present study, we show that similar cell type-dependent extracellular matrix aggregates are formed in dissociated cell cultures prepared from early postnatal mouse hippocampus. Starting from the 5th day in culture, accumulations of lattice-like extracellular structures labeled with Wisteria floribunda agglutinin were detected at the cell surface of parvalbumin-expressing interneurons, which developed after 2-3 weeks into conspicuous PNs localized around synaptic contacts at somata and proximal dendrites, as well as around axon initial segments. Physiological recording and intracellular labeling of PN-expressing neurons revealed that these are large fast-spiking interneurons with morphological characteristics of basket cells. To study mechanisms of activity-dependent formation of PNs, we performed pharmacological analysis and found that blockade of action potentials, transmitter release, Ca2+ permeable AMPA subtype of glutamate receptors or L-type Ca2+ voltage-gated channels strongly decreased the extracellular accumulation of PN components in cultured neurons. Thus, we suggest that Ca2+ influx via AMPA receptors and L-type channels is necessary for activity-dependent formation of PNs. To study functions of chondroitin sulfate-rich PNs, we treated cultures with chondroitinase ABC that resulted in a prominent reduction of several major PN components. Removal of PNs did not affect the number and distribution of perisomatic GABAergic contacts but increased the excitability of interneurons in cultures, implicating the extracellular matrix of PNs in regulation of interneuronal activity.  相似文献   
134.
Binding and activation of human plasminogen (Plg) to generate the proteolytic enzyme plasmin (Plm) have been associated with the invasive potential of certain bacteria. In this work, proteomic analysis together with ligand blotting assays identified several major Plg-binding spots in Mycobacterium tuberculosis soluble extracts (SEs) and culture filtrate proteins. The identity of 15 different proteins was deduced by N-terminal and/or MS and corresponded to DnaK, GroES, GlnA1, Ag85 complex, Mpt51, Mpt64, PrcB, MetK, SahH, Lpd, Icl, Fba, and EF-Tu. Binding of Plg to recombinant M. tuberculosis DnaK, GlnA1, and Ag85B was further confirmed by ELISA and ligand blotting assays. The binding was inhibited by epsilon-aminocaproic acid, indicating that the interaction involved lysine residues. Plg bound to recombinant mycobacterial proteins was activated to Plm by tissue-type Plg activator. In contrast with recombinant proteins, M. tuberculosis SE enhanced several times the Plg activation mediated by the activator. Interestingly, GlnA1 was able to bind the extracellular matrix (ECM) protein fibronectin. Together these results show that M. tuberculosis posses several Plg receptors suggesting that bound Plg to bacteria surface, can be activated to Plm, endowing bacteria with the ability to break down ECM and basal membranes proteins contributing to tissue injury in tuberculosis.  相似文献   
135.
G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are of major therapeutic importance. The identification of GPCR-associated proteins is an important step toward a better understanding of these receptors. However, current methods are not satisfying as only isolated receptor domains (intracellular loops or carboxyl-terminal tails) can be used as "bait." We report here a method based on tandem affinity purification coupled to mass spectrometry that overcomes these limitations as the entire receptor is used to identify protein complexes formed in living mammalian cells. The human MT(1) and MT(2) melatonin receptors were chosen as model GPCRs. Both receptors were tagged with the tandem affinity purification tag at their carboxyl-terminal tails and expressed in human embryonic kidney 293 cells. Receptor solubilization and purification conditions were optimized. The method was validated by the co-purification of G(i) proteins, which are well known GPCR interaction partners but which are difficult to identify with current protein-protein interaction assays. Several new and functionally relevant MT(1)- and MT(2)-associated proteins were identified; some of them were common to both receptors, and others were specific for each subtype. Taken together, our protocol allowed for the first time the purification of GPCR-associated proteins under native conditions in quantities suitable for mass spectrometry analysis.  相似文献   
136.
Aberrant DNA methylation occurs early in oncogenesis, is stable, and can be assayed in tissues and body fluids. Therefore, genes with aberrant methylation can provide clues for understanding tumor pathways and are attractive candidates for detection of early neoplastic events. Identification of sequences that optimally discriminate cancer from other diseased and healthy tissues is needed to advance both approaches. Using well-characterized specimens, genome-wide methylation techniques were used to identify candidate markers specific for colorectal neoplasia. To further validate 30 of these candidates from genome-wide analysis and 13 literature-derived genes, including genes involved in cancer and others with unknown functions, a high-throughput methylation-specific oligonucleotide microarray was used. The arrays were probed with bisulfite-converted DNA from 89 colorectal adenocarcinomas, 55 colorectal polyps, 31 inflammatory bowel disease, 115 extracolonic cancers, and 67 healthy tissues. The 20 most discriminating markers were highly methylated in colorectal neoplasia (area under the receiver operating characteristic curve > 0.8; P < 0.0001). Normal epithelium and extracolonic cancers revealed significantly lower methylation. Real-time PCR assays developed for 11 markers were tested on an independent set of 149 samples from colorectal adenocarcinomas, other diseases, and healthy tissues. Microarray results could be reproduced for 10 of 11 marker assays, including eight of the most discriminating markers (area under the receiver operating characteristic curve > 0.72; P < 0.009). The markers with high specificity for colorectal cancer have potential as blood-based screening markers whereas markers that are specific for multiple cancers could potentially be used as prognostic indicators, as biomarkers for therapeutic response monitoring or other diagnostic applications, compelling further investigation into their use in clinical testing and overall roles in tumorigenesis.  相似文献   
137.
138.
Species of the genus Ulva (Chlorophyta) are regarded as opportunistic organisms, which efficiently adjust their metabolism to the prevailing environmental conditions. In this study, changes in chlorophyll‐a fluorescence‐based photoinhibition of photosynthesis, electron transport rates, photosynthetic pigments, lipid peroxidation, total phenolic compounds, and antioxidant metabolism were investigated during a diurnal cycle of natural solar radiation in summer (for 12 h) under two treatments: photosynthetically active radiation (PAR: 400–700 nm) and PAR+ ultraviolet (UV) radiation (280–700 nm). In the presence of PAR alone, Ulva rigida showed dynamic photoinhibition, and photosynthetic parameters and pigment concentrations decreased with the intensification of the radiation. On the other hand, under PAR+UV conditions a substantial decline up to 43% was detected and an incomplete fluorescence recovery, also, P‐I curve values remained low in relation to the initial condition. The phenolic compounds increased their concentration only in UV radiation treatments without showing a correlation with the antioxidant activity. The enzimatic activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased over 2‐fold respect at initial values during the onset of light intensity. In contrast, catalase (CAT) increased its activity rapidly in response to the radiation stress to reach maxima at 10 a.m. and decreasing during solar. The present study suggests that U. rigida is capable of acclimating to natural radiation stress relies on a concerted action of various physiological mechanisms that act at different times of the day and under different levels of environmental stress.  相似文献   
139.
The influence of process strategies on the dynamics of cell population heterogeneities in mammalian cell culture is still not well understood. We recently found that the progression of cells through the cell cycle causes metabolic regulations with variable productivities in antibody-producing Chimese hamster ovary (CHO) cells. On the other hand, it is so far unknown how bulk cultivation conditions, for example, variable nutrient concentrations depending on process strategies, can influence cell cycle-derived population dynamics. In this study, process-induced cell cycle synchronization was assessed in repeated-batch and fed-batch cultures. An automated flow cytometry set-up was developed to measure the cell cycle distribution online, using antibody-producing CHO DP-12 cells transduced with the cell cycle-specific fluorescent ubiquitination-based cell cycle indicator (FUCCI) system. On the basis of the population-resolved model, feeding-induced partial self-synchronization was predicted and the results were evaluated experimentally. In the repeated-batch culture, stable cell cycle oscillations were confirmed with an oscillating G1 phase distribution between 41% and 72%. Furthermore, oscillations of the cell cycle distribution were simulated and determined in a (bolus) fed-batch process with up to cells/ml. The cell cycle synchronization arose with pulse feeding only and ceased with continuous feeding. Both simulated and observed oscillations occurred at higher frequencies than those observable based on regular (e.g., daily) sample analysis, thus demonstrating the need for high-frequency online cell cycle analysis. In summary, we showed how experimental methods combined with simulations enable the improved assessment of the effects of process strategies on the dynamics of cell cycle-dependent population heterogeneities. This provides a novel approach to understand cell cycle regulations, control cell population dynamics, avoid inadvertently induced oscillations of cell cycle distributions and thus to improve process stability and efficiency.  相似文献   
140.
DNA intercalators bind nucleic acids by stacking between adjacent basepairs. This causes a considerable elongation of the DNA backbone as well as untwisting of the double helix. In the past few years, single-molecule mechanical experiments have become a common tool to characterize these deformations and to quantify important parameters of the intercalation process. Parameter extraction typically relies on the neighbor-exclusion model, in which a bound intercalator prevents intercalation into adjacent sites. Here, we challenge the neighbor-exclusion model by carefully quantifying and modeling the force-extension and twisting behavior of single ethidium-complexed DNA molecules. We show that only an anticooperative ethidium binding that allows for a disfavored but nonetheless possible intercalation into nearest-neighbor sites can consistently describe the mechanical behavior of intercalator-bound DNA. At high ethidium concentrations and elevated mechanical stress, this causes an almost complete occupation of nearest-neighbor sites and almost a doubling of the DNA contour length. We furthermore show that intercalation into nearest-neighbor sites needs to be considered when estimating intercalator parameters from zero-stress elongation and twisting data. We think that the proposed anticooperative binding mechanism may also be applicable to other intercalating molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号