首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   900篇
  免费   74篇
  2023年   4篇
  2022年   6篇
  2021年   22篇
  2020年   25篇
  2019年   14篇
  2018年   18篇
  2017年   13篇
  2016年   28篇
  2015年   30篇
  2014年   38篇
  2013年   57篇
  2012年   78篇
  2011年   78篇
  2010年   33篇
  2009年   25篇
  2008年   44篇
  2007年   47篇
  2006年   40篇
  2005年   32篇
  2004年   28篇
  2003年   17篇
  2002年   18篇
  2001年   15篇
  2000年   11篇
  1999年   10篇
  1998年   7篇
  1997年   8篇
  1996年   15篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   11篇
  1991年   18篇
  1990年   13篇
  1989年   18篇
  1988年   9篇
  1987年   10篇
  1986年   7篇
  1985年   14篇
  1984年   12篇
  1983年   4篇
  1982年   6篇
  1981年   10篇
  1979年   4篇
  1978年   7篇
  1977年   4篇
  1976年   4篇
  1974年   8篇
  1972年   6篇
  1969年   5篇
排序方式: 共有974条查询结果,搜索用时 15 毫秒
61.
In recent years, indole-indazolyl hydrazide-hydrazone derivatives with strong cell growth inhibition and apoptosis induction characteristics are being strongly screened for their cancer chemo-preventive potential. In the present study, N-methyl and N,N-dimethyl bis(indolyl)hydrazide-hydrazone analog derivatives were designed, synthesized and allowed to evaluate for their anti-proliferative and apoptosis induction potential against cervical (HeLa), breast (MCF-7 and MDA-MB-231) and lung (A549) cancer cell lines relative to normal HEK293 cells. The MTT assay in conjunction with mitochondrial potential assays and the trypan blue dye exclusion were employed to ascertain the effects of the derivatives on the cancer cells. Further, mechanistic studies were conducted on compound 14a to understand the biochemical mechanisms and functional interactions with various signaling pathways triggered in HeLa and MCF-7 cells. Compound 14a induced apoptosis via caspase independent pathway through the participation of mitogen-activated protein kinases (MAPK) such as extracellular signal related kinase (ERK) and p38 as well as p53 pathways. It originates the activation of pro-apoptotic proteins such as Bak and Mcl-1s and also strongly induced the generation of reactive oxygen species. In downstream signaling pathway, activated p53 protein interacted with MAPK pathways, including SAPK/c-Jun N-terminal protein kinase (JNK), p38 and ERK kinases resulting in apoptotic cell death. The involvement of MAPK cascades such as p38, ERK and p38 on compound 14a induced apoptotic cell death was evidenced by the fact that the inclusion of specific inhibitors of p38, ERK1/2 and JNK MAPK (SB2035809, PD98059 and SP600125) prevented the compound 14a towards induced apoptosis. The results clearly showed that MAP kinase cascades were crucial for apoptotic response in compound 14a induced cellular killing and were dependent on p53 activity. Based on the results, compound 14a was identified as a promising candidate for cancer therapeutics and these findings furnish a basis for further in vivo experiments on anti-proliferative activity.  相似文献   
62.
The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions.  相似文献   
63.
Raju NB  Metzenberg RL  Shiu PK 《Genetics》2007,176(1):43-52
In Neurospora crassa, pairing of homologous DNA segments is monitored during meiotic prophase I. Any genes not paired with a homolog, as well as any paired homologs of that gene, are silenced during the sexual phase by a mechanism known as meiotic silencing by unpaired DNA (MSUD). Two genes required for MSUD have been described previously: sad-1 (suppressor of ascus dominance), encoding an RNA-directed RNA polymerase, and sad-2, encoding a protein that controls the perinuclear localization of SAD-1. Inactivation of either sad-1 or sad-2 suppresses MSUD. We have now shown that MSUD is also suppressed by either of two Spore killer strains, Sk-2 and Sk-3. These were both known to contain a haplotype segment that behaves as a meiotic drive element in heterozygous crosses of killer x sensitive. Progeny ascospores not carrying the killer element fail to mature and are inviable. Crosses homozygous for either of the killer haplotypes suppress MSUD even though ascospores are not killed. The killer activity maps to the same 30-unit-long region within which recombination is suppressed in killer x sensitive crosses. We suggest that the region contains a suppressor of MSUD.  相似文献   
64.
Familial clustering and ethnic differences suggest that visceral leishmaniasis caused by Leishmania donovani is under genetic control. A recent genome scan provided evidence for a major susceptibility gene on Chromosome 22q12 in the Aringa ethnic group in Sudan. We now report a genome-wide scan using 69 families with 173 affected relatives from two villages occupied by the related Masalit ethnic group. A primary ten-centimorgan scan followed by refined mapping provided evidence for major loci at 1p22 (LOD score 5.65; nominal p = 1.72 × 10−7; empirical p < 1 × 10−5; λS = 5.1) and 6q27 (LOD score 3.74; nominal p = 1.68 × 10−5; empirical p < 1 × 10−4; λS = 2.3) that were Y chromosome–lineage and village-specific. Neither village supported a visceral leishmaniasis susceptibility gene on 22q12. The results suggest strong lineage-specific genes due to founder effect and consanguinity in these recently immigrant populations. These chance events in ethnically uniform African populations provide a powerful resource in the search for genes and mechanisms that regulate this complex disease.  相似文献   
65.
Glycosylation in the CH2 domain of Fc is required for immunoglobulins G (IgGs) to exhibit immune effector functions including complement-dependent cytotoxicity (CDC) and antibody-dependent (Ab-dependent) cellular cytotoxicity (ADCC). We recently established that glycosylated Abs are more resistant to papain digestion than non-glycosylated IgGs (Biochem. Biophys. Res. Commun. 2006, 341, 797-803). To test whether specific Fc glycan structures affect Ab resistance to papain, we used in vitro glycoengineering methods to prepare homogeneous Ab glycoforms terminated with either sialic acid (G2S2), beta-galactose (G2), or N-acetylglucosamine (G0) and subjected them to papain digestions. Analyses of aliquots taken at different times during the digestions by matrix-assisted laser desorption-time-of-flight-mass spectroscopy (MALDI-TOF-MS) and high-performance liquid chromatography (HPLC) methods showed that the G0 glycoform was at least two times more resistant to papain digestion than the G2 and G2S2 glycoforms. The increased resistance of the G0 glycoform over the G2 and G2S2 glycoforms was independent of the specific Ab analyzed. A mouse/human chimeric version of Ab1, a fully human version of Ab2, and a humanized version of Ab3 exhibited a similar pattern of glycoform-dependent resistance. These data suggest that terminal sugars of Fc glycans may play important roles in Ab stability and affect resistance to proteases in addition to impacting Ab effector functions.  相似文献   
66.
The role of niacin’s metabolite, nicotinamide adenine dinucleotide (NAD), in DNA repair via base-excision repair pathway is well documented. We evaluated if niacin deficiency results in genetic instability in normal human fetal lung fibroblasts (MRC-5), and further, does it leads to enhanced accumulation of cigarette smoke–induced genetic damage? MRC-5 cells were grown discretely in niacin-proficient/deficient media, and exposed to nicotine-derived nitrosamine ketone (NNK, a cigarette smoke carcinogen). Niacin deficiency abated the NAD polymerization, augmented the spontaneous induction of micronuclei (MN) and chromosomal aberrations (CA) and raised the expression of 10 genes and suppressed 12 genes involved in different biological functions. NNK exposure resulted in genetic damage as measured by the induction of MN and CA in cells grown in niacin-proficient medium, but the damage became practically marked when niacin-deficient cells were exposed to NNK. NNK exposure raised the expression of 16 genes and suppressed the expression of 56 genes in cells grown in niacin-proficient medium. NNK exposure to niacin-deficient cells raised the expression of eight genes including genes crucial in promoting cancer such as FGFR3 and DUSP1 and suppressed the expression of 33 genes, including genes crucial in preventing the onset and progression of cancer like RASSF2, JUP, and IL24, in comparison with the cells grown in niacin-proficient medium. Overall, niacin deficiency interferes with the DNA damage repair process induced by chemical carcinogens like NNK, and niacin-deficient population are at the higher risk of genetic instability caused by cigarette smoke carcinogen NNK.  相似文献   
67.
Therapeutic glycoproteins produced in different host cells by recombinant DNA technology often contain terminal GlcNAc and Gal residues. Such glycoproteins clear rapidly from the serum as a consequence of binding to the mannose receptor and/or the asialoglycoprotein receptor in the liver. To increase the serum half-life of these glycoproteins, we carried out in vitro glycosylation experiments using TNFR-IgG, an immunoadhesin molecule, as a model therapeutic glycoprotein. TNFR-IgG is a disulfide-linked dimer of a polypeptide composed of the extracellular portion of the human type 1 (p55) tumor necrosis factor receptor (TNFR) fused to the hinge and Fc regions of the human IgG(1) heavy chain. This bivalent antibody-like molecule contains four N-glycosylation sites per polypeptide, three in the receptor portion and one in the Fc. The heterogeneous N-linked oligosaccharides of TNFR-IgG contain sialic acid (Sia), Gal, and GlcNAc as terminal sugar residues. To increase the level of terminal sialylation, we regalactosylated and/or resialylated TNFR-IgG using beta-1,4-galactosyltransferase (beta1,4GT) and/or alpha-2,3-sialyltransferase (alpha2,3ST). Treatment of TNFR-IgG with beta1,4GT and UDP-Gal, in the presence of MnCl(2), followed by MALDI-TOF-MS analysis of PNGase F-released N-glycans showed that the number of oligosaccharides with terminal GlcNAc residues was significantly decreased with a concomitant increase in the number of terminal Gal residues. Similar treatment of TNFR-IgG with alpha2,3ST and CMP-sialic acid (CMP-Sia), in the presence of MnCl(2), produced a molecule with an approximately 11% increase in the level of terminal sialylation but still contained oligosaccharides with terminal GlcNAc residues. When TNFR-IgG was treated with a combination of beta1,4GT and alpha2,3ST (either in a single step or in a stepwise fashion), the level of terminal sialylation was increased by approximately 20-23%. These results suggest that in vitro galactosylation and sialylation of therapeutic glycoproteins with terminal GlcNAc and Gal residues can be achieved in a single step, and the results are similar to those for the stepwise reaction. This type of in vitro glycosylation is applicable to other glycoproteins containing terminal GlcNAc and Gal residues and could prove to be useful in increasing the serum half-life of therapeutic glycoproteins.  相似文献   
68.
The methanolic extract of rhizome of Himalayan rhubarb Rheum emodi displayed mild yeast as well as mammalian intestinal alpha-glucosidase inhibitory activity. However, further fractionation of active extract led to the isolation of several potent molecules in excellent yields, displaying varying degrees of inhibition on two test models of alpha-glucosidase. Rhapontigenin, desoxyrhapontigenin, chrysophanol-8-O-beta-d-glucopyranoside, torachrysone-8-O-beta-d-glucopyranoside displayed potent yeast alpha-glucosidase inhibition. However chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin and torachrysone-8-O-beta-d-glucopyranoside displayed potent to moderate mammalian alpha-glucosidase inhibitory activity. Other compounds displayed mild activity on both the tests. Except desoxyrhapontigenin and rhapontigenin that increased Vmax, other compounds including crude extract decreased the Vmax significantly (p<0.02) in yeast alpha-glucosidase test. Further kinetic analysis on mammalian alpha-glucosidase inhibition showed that chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin and torachrysone-8-O-beta-d-glucopyranoside may be classified as mixed-noncompetitive inhibitors. However, desoxyrhapontigenin and rhapontigenin may be classified as modulators of enzyme activity. Presence and position of glycoside moiety in compounds appear important for better inhibition of mammalian alpha-glucosidase. This is the first report assigning particularly, mammalian intestinal alpha-glucosidase inhibitory activity to these compounds. Chrysophanol-8-O-beta-d-glucopyranoside, desoxyrhaponticin, desoxyrhapontigenin and rhapontigenin have been isolated in substantial yields from R. emodi for the first time. Therefore, these compounds may have value in the treatment and prevention of hyperglycemia associated diabetes mellitus.  相似文献   
69.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily that play important roles in bone formation, embryonic patterning, and epidermal-neural cell fate decisions. BMPs signal through pathway specific mediators such as Smads1 and 5, but the upstream regulation of BMP-specific Smads has not been fully characterized. Here we report the identification of SANE (Smad1 Antagonistic Effector), a novel protein with significant sequence similarity to nuclear envelop proteins such as MAN1. SANE binds to Smad1/5 and to BMP type I receptors and regulates BMP signaling. SANE specifically blocks BMP-dependent signaling in Xenopus embryos and in a mammalian model of bone formation but does not inhibit the TGF-beta/Smad2 pathway. Inhibition of BMP signaling by SANE requires interaction between SANE and Smad1, because a SANE mutant that does not bind Smad1 does not inhibit BMP signaling. Furthermore, inhibition appears to be mediated by inhibition of BMP-induced Smad1 phosphorylation, blocking ligand-dependent nuclear translocation of Smad1. These studies define a new mode of regulation for intracellular BMP/Smad1 signaling.  相似文献   
70.
Partial 'turn-helix' type modules comprised of LD and DL chiral beta-turns serving as potential helix nucleators have been connected with a view to designing a nascent 'helix-turn-helix' type structure. Conformation of the resultant peptide Boc-(D)Glu-Ala-Aib-Lys-Val-Pro-(D)Asp-Leu-Leu-NHMe has been described in both DMSO and water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号