首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1910篇
  免费   146篇
  国内免费   1篇
  2023年   13篇
  2022年   18篇
  2021年   49篇
  2020年   41篇
  2019年   41篇
  2018年   35篇
  2017年   34篇
  2016年   49篇
  2015年   61篇
  2014年   78篇
  2013年   126篇
  2012年   137篇
  2011年   98篇
  2010年   85篇
  2009年   82篇
  2008年   102篇
  2007年   96篇
  2006年   79篇
  2005年   77篇
  2004年   58篇
  2003年   44篇
  2002年   58篇
  2001年   42篇
  2000年   35篇
  1999年   26篇
  1998年   20篇
  1997年   18篇
  1996年   20篇
  1995年   11篇
  1993年   15篇
  1992年   21篇
  1991年   24篇
  1990年   20篇
  1989年   33篇
  1988年   22篇
  1987年   20篇
  1986年   16篇
  1985年   30篇
  1984年   23篇
  1982年   12篇
  1981年   15篇
  1979年   14篇
  1977年   13篇
  1976年   14篇
  1975年   9篇
  1974年   14篇
  1973年   9篇
  1972年   10篇
  1971年   9篇
  1966年   11篇
排序方式: 共有2057条查询结果,搜索用时 31 毫秒
131.
132.
To investigate the mechanisms underlying long-term resistance of the A/J mouse strain to diet-induced obesity, we studied, over a period of 4 wk, the expression of uncoupling proteins in brown adipose tissue and the expression of hypothalamic neuropeptides known to regulate energy homeostasis and then used microarray analysis to identify other potentially important hypothalamic peptides. Despite increased caloric intake after 2 days of high-fat feeding, body weights of A/J mice remained stable. On and after 1 wk of high-fat feeding, A/J mice adjusted their food intake to consume the same amount of calories as mice fed a low-fat diet; thus their body weight and insulin, corticosterone, free fatty acid, and glucose levels remained unchanged for 4 wk. We found no changes in hypothalamic expression of several orexigenic and/or anorexigenic neuropeptides known to play an important role in energy homeostasis for the duration of the study. Uncoupling protein-2 mRNA expression in brown adipose tissue, however, was significantly upregulated after 2 days of high-fat feeding and tended to remain elevated for the duration of the 4-wk study. Gene array analysis revealed that several genes are up- or downregulated in response to 2 days and 1 wk of high-fat feeding. Real-time PCR analysis confirmed that expression of the hypothalamic IL-1 pathway (IL-1beta, IL-1 type 1 and 2 receptors, and PPM1b/PP2C-beta, a molecule that has been implicated in the inhibition of transforming growth factor-beta-activated kinase-1-mediated IL-1 action) is altered after 2 days, but not 1 wk, of high-fat feeding. The role of additional molecules discovered by microarray analysis needs to be further explored in the future.  相似文献   
133.
N-Aryl aminothiazoles 6-9 were prepared from 2-bromothiazole 5 and found to be CDK inhibitors. In cells they act as potent cytotoxic agents. Selectivity for CDK1, CDK2, and CDK4 was dependent of the nature of the N-aryl group and distinct from the CDK2 selective N-acyl analogues. The N-2-pyridyl analogues 7 and 19 showed pan CDK inhibitory activity. Elaborated analogues 19 and 23 exhibited anticancer activity in mice against P388 murine leukemia. The solid-state structure of 7 bound to CDK2 shows a similar binding mode to the N-acyl analogues.  相似文献   
134.
The purpose of these studies was to achieve desired bioavailability after pulmonary administration of Levonorgestrel (LN) and to provide prolonged effective concentration of the drug in plasma and to reduce reported side effects of orally administered drug. The plain drug suspension, physical mixture (plain drug with liposomal constituents), and drug-encapsulated liposomes containing 10 μg of drug were instilled intratracheally in rats. Similarly, 10-μg drug suspension (LO) was administered orally. The blood samples were withdrawn at specific time intervals and were subjected to LN analysis by spectrofluorimetric technique. The plasma drug concentration data of both the treatments were plotted, and pharmacokinetics data were calculated and compared with that of oral administration. Percentage relative bioavailability (F*) of 97.6% 98.6%, and 109.9% were observed after pulmonary administration of plain drug formulation (LP1), physical mixture (plain drug along with constituents of liposomes [LP2], and liposomal (LP3) formulations of the drug, respectively. Following oral administration, Cmax of 14.4±0.6 ng/mL was observed at 2.1±0.2 hours followed by subtherapeutic concentration beyond 30±0.2 hours, while after pulmonary administration of LP1, LP2, and LP3 formulations, Cmax of 4.4±0.4 ng/mL, 4.2±0.5 ng/mL, and 4.4±0.6 ng/ML were observed at 6.0±0.2 hours, 7.0±0.2 hours, and 6.8±0.2 hours, respectively, followed by maintenance of effective plasma drug concentration up to 60±2 hours. These studies demonstrate superiority of pulmonary drug delivery with regards to maintenance of effective therapeutic concentration of the LN in the plasma over a period of 6 to 60 hours. Hence, the pulmonary delivery is expected to reduce frequency of dosing and systemic side effects associated with oral administration of LN.  相似文献   
135.
Potato is the world's largest non-cereal crop. Potato late blight is a pandemic, foliar wasting potato disease caused by Phytophthora infestans, which has become highly virulent, fungicide resistant, and widely disseminated. Similarly, fungicide resistant isolates of Phytophthora erythroseptica, which causes pink rot, have also become an economic scourge of potato tubers. Thus, an alternate, cost effective strategy for disease control has become an international imperative. Here we describe a strategy for engineering potato plants exhibiting strong protection against these exceptionally virulent pathogens without deleterious effects on plant yield or vigor. The small, naturally occurring antimicrobial cationic peptide, temporin A, was N-terminally modified (MsrA3) and expressed in potato plants. MsrA3 conveyed strong resistance to late blight and pink rot phytopathogens in addition to the bacterial pathogen Erwinia carotovora. Transgenic tubers remained disease-free during storage for more than 2 years. These results provide a timely, sustainable, effective, and environmentally friendly means of control of potato diseases while simultaneously preventing storage losses.  相似文献   
136.
137.
The precise molecular mechanisms responsible for sepsis-induced myocardial dysfunction remain undefined. Toll-like receptor-4 (TLR-4) engages lipopolysaccharide (LPS) and activates signaling pathways leading to the expression of proinflammatory cytokines implicated in myocardial dysfunction. We determined whether TLR-4 was necessary for LPS-induced myocardial dysfunction in vivo. The effects of LPS on left ventricular (LV) function were studied in mice with defective TLR-4 signaling (C3H/HeJ, TLR-4 deficient) and wild-type mice (C3HeB/FeJ). Mice (n = 5/group) were injected with LPS or diluent, and LV function was examined by using two-dimensional echocardiography and conductance catheters. LPS significantly decreased all indexes of LV function in wild-type mice when compared with controls; LV function was not depressed in the LPS-treated TLR-4-deficient mice relative to controls. LPS increased myocardial nitric oxide synthase-2 expression and cGMP only in wild-type mice. This study suggests that TLR-4 mediates the LV dysfunction that occurs in LPS-induced shock. Therefore, TLR-4 might be a therapeutic target for attenuating the effects of LPS on the heart.  相似文献   
138.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction. In the current study, we employed alpha(2)-macroglobulin (alpha(2)M)-agarose column chromatography to purify cell surface membrane binding proteins from 1-LN human prostate cancer cells and murine macrophages. The predominant binding protein purified from 1-LN prostate cancer cells was Grp 78 with small amounts of LRP, a fact that is consistent with our previous observations that there is little LRP present on the surface of these cells. The ratio of LRP:Grp 78 is much higher in macrophages. Flow cytometry was employed to demonstrate the presence of Grp 78 on the cell surface of 1-LN cells. Purified Grp 78 binds to alpha(2)M* with high affinity (K(d) approximately 150 pm). A monoclonal antibody directed against Grp 78 both abolished alpha(2)M*-induced signal transduction and co-precipitated LRP. Ligand blotting with alpha(2)M* showed binding to both Grp 78 and LRP heavy chains in these preparations. Use of RNA interference to silence LRP expression had no effect on alpha(2)M*-mediated signaling. We conclude that Grp 78 is essential for alpha(2)M*-induced signal transduction and that a "co-receptor" relationship exists with LRP like that seen with several other ligands and receptors such as the uPA/uPAR (urinary type plasminogen activator or urokinase/uPA receptor) system.  相似文献   
139.
Ligation of alpha(2)-macroglobulin receptors by receptor-recognized forms of alpha(2)-macroglobulin (alpha(2)M*) activates various signaling cascades and promotes cell proliferation. It also elevates cAMP in murine peritoneal macrophages. We now report that a significant elevation of cAMP-response element-binding protein (CREB) occurs in alpha(2)M*-stimulated cells, and this effect is potentiated by isobutylmethylxanthine, dibutyryl-cAMP, or forskolin. An alpha(2)M* concentration-dependent rapid increase in phosphorylated CREB at Ser(133) also occurred, a necessary event in its activation. Inhibition of Ca(2+)/calmodulin kinase, protein kinases A and C, tyrosine kinases, ribosomal S6 kinase, farnesyl transferase, extracellular signal-regulated kinases 1/2, phosphatidylinositol 3-kinase, or p38 mitogen-activated protein kinase markedly reduce alpha(2)M*-induced phosphorylation of CREB, indicating a role for the p21(ras)-dependent and phosphatidylinositol 3-kinase signaling pathways in regulating CREB activation by alpha(2)M*. Finally, silencing the CREB gene by transfecting cells with a homologous gene sequence double-stranded RNA drastically reduced the expression of CREB and blocked the ability of alpha(2)M* to promote macrophage cell division. We conclude that cAMP-dependent signal transduction as well as other signaling cascades are essential for alpha(2)M*-induced cell proliferation.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号