首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3456篇
  免费   285篇
  国内免费   3篇
  2023年   13篇
  2021年   36篇
  2020年   31篇
  2019年   51篇
  2018年   52篇
  2017年   41篇
  2016年   68篇
  2015年   105篇
  2014年   167篇
  2013年   168篇
  2012年   220篇
  2011年   209篇
  2010年   162篇
  2009年   148篇
  2008年   215篇
  2007年   231篇
  2006年   209篇
  2005年   218篇
  2004年   193篇
  2003年   167篇
  2002年   190篇
  2001年   58篇
  2000年   44篇
  1999年   42篇
  1998年   49篇
  1997年   35篇
  1996年   35篇
  1995年   41篇
  1994年   30篇
  1993年   35篇
  1992年   27篇
  1991年   30篇
  1990年   28篇
  1989年   24篇
  1988年   23篇
  1987年   19篇
  1986年   11篇
  1985年   31篇
  1984年   25篇
  1983年   18篇
  1982年   24篇
  1981年   16篇
  1980年   26篇
  1979年   12篇
  1978年   15篇
  1977年   13篇
  1976年   13篇
  1974年   14篇
  1973年   11篇
  1969年   10篇
排序方式: 共有3744条查询结果,搜索用时 140 毫秒
101.
Antibodies and antibody-based drugs are currently the fastest-growing class of therapeutics. Over the last three decades, more than 30 therapeutic monoclonal antibodies and derivatives thereof have been approved for and successfully applied in diverse indication areas including cancer, organ transplants, autoimmune/inflammatory disorders, and cardiovascular disease. The isotype of choice for antibody therapeutics is human IgG, whose Fc region contains a ubiquitous asparagine residue (N297) that acts as an acceptor site for N-linked glycans. The nature of these glycans can decisively influence the therapeutic performance of a recombinant antibody, and their absence or modification can lead to the loss of Fc effector functions, greater immunogenicity, and unfavorable pharmacokinetic profiles. However, recent studies have shown that aglycosylated antibodies can be genetically engineered to display novel or enhanced effector functions and that favorable pharmacokinetic properties can be preserved. Furthermore, the ability to produce aglycosylated antibodies in lower eukaryotes and bacteria offers the potential to broaden and simplify the production platforms and avoid the problem of antibody heterogeneity, which occurs when mammalian cells are used for production. In this review, we discuss the importance of Fc glycosylation focusing on the use of aglycosylated and glyco-engineered antibodies as therapeutic proteins.  相似文献   
102.
Abstract

Kinetics of the reactions of 6-substituted 9-(β-Q-ribofuranosyl)purines with aqueous alkalies have been studied liquid chromatographicaIly.  相似文献   
103.
Abstract

The strategies for packaging the T4 coliphage chromosome are presented. Our probability model based on fractality of DNA “globules” (fasces-like DNA globules) is consistent with transient condensation modelling to the final maximally condensed state.  相似文献   
104.
The chronic use of nicotine, the main psychoactive ingredient of tobacco smoking, alters diverse physiological processes and consequently generates physical dependence. To understand the impact of chronic nicotine on neuropeptides, which are potential molecules associated with dependence, we conducted qualitative and quantitative neuropeptidomics on the rat dorsal striatum, an important brain region implicated in the preoccupation/craving phase of drug dependence. We used extensive LC-FT-MS/MS analyses for neuropeptide identification and LC-FT-MS in conjunction with stable isotope addition for relative quantification. The treatment with chronic nicotine for 3 months led to moderate changes in the levels of endogenous dorsal striatum peptides. Five enkephalin opioid peptides were up-regulated, although no change was observed for dynorphin peptides. Specially, nicotine altered levels of nine non-opioid peptides derived from precursors, including somatostatin and cerebellin, which potentially modulate neurotransmitter release and energy metabolism. This broad but selective impact on the multiple peptidergic systems suggests that apart from the opioid peptides, several other peptidergic systems are involved in the preoccupation/craving phase of drug dependence. Our finding permits future evaluation of the neurochemical circuits modulated by chronic nicotine exposure and provides a number of novel molecules that could serve as potential therapeutic targets for treating drug dependence.Nicotine is the main psychoactive ingredient of tobacco (1). By acting on the nicotinic acetylcholine receptors located in diverse brain areas, nicotine generates psychoactive effects such as euphoria, reduced stress, increased energy, and enhanced cognitive functions (2). Chronic nicotine use alters various aspects of neurochemical transmission and has a strong impact on diverse physiological processes (2), resulting in drug-seeking and drug-taking behaviors for normal smokers and for a considerable number of patients suffering from schizophrenia and Alzheimer disease, who use nicotine for self-medication (3, 4). The dorsal striatum (DS)1 is one of the key brain regions that has been associated with neural regulation during chronic nicotine exposure (5). In particular, the DS is involved in habit formation during the preoccupation/craving (later) phase of nicotine dependence characterized by compulsive drug-taking (6). Behavioral changes associated with nicotine dependence have been linked to small molecule neurotransmitter systems, including the glutamate and dopamine system in the DS (7). The DS is also known to contain diverse neuropeptides, many of which are probably critical mediators of physiological processes that are associated with nicotine, such as the regulation of reinforcement and energy metabolism. However, neuropeptides have not been extensively investigated in the DS during long periods of nicotine administration.Immunoassay studies have shown that neuropeptides, including substance P, neuropeptide Y, and opioid peptides, including the enkephalins, are expressed by inhibitory neurons (8), which make up a large majority of the neurons in the DS (9). Many of these inhibitory GABAergic neurons express nicotinic cholinergic receptors (10), suggesting that nicotine administration may regulate their activity, leading to variations in the release of neuropeptides, as well as the inhibitory neurotransmitter GABA. Previous investigations of peptide regulation during chronic nicotine administration in the striatum have exclusively focused on the class of opioid peptides, which are thought to play an important role in the control of diverse physiological processes, including reward processing, nociception, and regulation of emotions (11, 12). Available studies have focused on the analysis of three opioid peptides, their precursors, or receptors as follows: met-enkephalin, dynorphin, and β-endorphin, using conventional techniques like immunoassays (13, 14). There is considerable variability in reported changes of peptide levels in the striatum during chronic nicotine administration. For example, when animals are treated with 1 mg/kg free base nicotine (daily for 14 days), met-enkephalin increased in the striatum (15). By contrast, met-enkephalin is reduced in the striatum when rats are treated with 0.3 mg/kg nicotine (three times/day for 14 days) (16). A number of factors might contribute to this observed variability, including the exact dosing, daily frequency, time span of administration, and delivery method of nicotine. Furthermore, as individual studies have each so far generally examined a single opioid peptide, there is currently little reliable information about peptide co-regulation, even for these well studied opioid peptides. In addition to these opioid peptides, the DS expresses peptides from other peptide families, which are also potential targets under the regulation of chronic nicotine treatment. So far, however, there is no information available about changes of these non-opioid peptides during chronic nicotine administration.In this study, our aim was to use a neuropeptidomics approach (17) to provide a comprehensive characterization of dorsal striatal neuropeptides after long term nicotine chronic treatment in adult rats using oral administration. The main advantage of this approach is that it allows the simultaneous monitoring of many peptides from the same brain tissue derived from a single drug protocol. We used a combination of a robust sample preparation method (18), high accuracy LC-MS analysis (19, 20), and the use of multiple synthetic internal standards (21) to compare peptide levels in the DS between chronic nicotine and control animals. Our peptidome analysis determined 14 peptides exhibiting significant changes following chronic nicotine administration. Among these peptides were members of the opioid family that had previously been associated with nicotine dependence, as well as a number of newly identified peptides, including members of the secretogranin, cholecystokinin, and somatostatin families. This greatly expands the present scope of peptide involvement in drug dependence in the dorsal striatum.  相似文献   
105.
Intracellular transport and maintenance of the endomembrane system in eukaryotes depends on formation and fusion of vesicular carriers. A seeming discrepancy exists in the literature about the basic mechanism in the scission of transport vesicles that depend on GTP‐binding proteins. Some reports describe that the scission of COP‐coated vesicles is dependent on GTP hydrolysis, whereas others found that GTP hydrolysis is not required. In order to investigate this pivotal mechanism in vesicle formation, we analyzed formation of COPI‐ and COPII‐coated vesicles utilizing semi‐intact cells. The small GTPases Sar1 and Arf1 together with their corresponding coat proteins, the Sec23/24 and Sec13/31 complexes for COPII and coatomer for COPI vesicles were required and sufficient to drive vesicle formation. Both types of vesicles were efficiently generated when GTP hydrolysis was blocked either by utilizing the poorly hydrolyzable GTP analogs GTPγS and GMP‐PNP, or with constitutively active mutants of the small GTPases. Thus, GTP hydrolysis is not required for the formation and release of COP vesicles.  相似文献   
106.
Many pathogenic Gram‐negative bacteria possess type IV secretion systems (T4SS) to inject effector proteins directly into host cells to modulate cellular processes to their benefit. The human bacterial pathogen Helicobacter pylori, a major aetiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma, harbours the cag‐T4SS to inject the cytotoxin associated Antigen (CagA) into gastric epithelial cells. This results in deregulation of major signalling cascades, actin‐cytoskeletal rearrangements and eventually gastric cancer. We show here that a pre‐infection with live H. pylori has a dose‐dependent negative effect on the CagA translocation efficiency of a later infecting strain. This effect of the ‘first’ strain was independent of any of its T4SS, the vacuolating cytotoxin (VacA) or flagella. Other bacterial pathogens, e.g. pathogenic Escherichia coli, Campylobacter jejuni, Staphylococcus aureus, or commensal bacteria, such as lactobacilli, were unable to interfere with H. pylori's CagA translocation capacity in the same way. This interference was independent of the β1 integrin receptor availability for H. pylori, but certain H. pylori outer membrane proteins, such as HopI, HopQ or AlpAB, were essential for the effect. We suggest that the specific interference mechanism induced by H. pylori represents a cellularresponse to restrict and control CagA translocation into a host cell to control the cellular damage.  相似文献   
107.
Adoptive transfer of antiviral T cells enhances immune reconstitution and decreases infectious complications after stem cell transplantation. Information on number and function of antiviral T cells in stem cell grafts is scarce. We investigated (1) immunomodulatory effects of G-CSF on antiviral T cells, (2) the influence of apheresis, and (3) the optimal time point to collect antiviral cells.CMV-, EBV- and ADV-specific T cells were enumerated in 170 G-CSF-mobilized stem cell and 24 non-mobilized platelet donors using 14 HLA-matched multimers. T-cell function was evaluated by IFN-γ ELISpot and granzyme B secretion. Immunophenotyping was performed by multicolor flow cytometry.G-CSF treatment did not significantly influence frequency of antiviral T cells nor their in vitro expansion rate upon antigen restimulation. However, T-cell function was significantly impaired, as expressed by a mean reduction in secretion of IFN-γ (75% in vivo, 40% in vitro) and granzyme B (32% target-independent, 76% target-dependent) as well as CD107a expression (27%). Clinical follow up data indicate that the first CMV-reactivation in patients and with it the need for T-cell transfer occurs while the donor is still under the influence of G-CSF.To overcome these limitations, T-cell banking before mobilization or recruitment of third party donors might be an option to optimize T-cell production.  相似文献   
108.
Historic samples of phytoplankton can provide information on the abundance of the toxigenic genotypes of cyanobacteria in dependence on increased or decreased eutrophication. The analysis of a time-series from preserved phytoplankton samples by quantitative PCR (qPCR) extends observation periods considerably. The analysis of DNA from heat-desiccated samples by qPCR can be aggravated by point substitutions or the fragmentation of DNA introduced by the high temperature. In this study, we analyzed whether the heat desiccation of the cellular material of the cyanobacterium Planktothrix sp. introduced potential errors to the template DNA that is used for qPCR within (i) 16S rDNA and phycocyanin genes and (ii) the mcyA gene indicative of the incorporation of either dehydrobutyrine (Dhb) or N-methyl-dehydroalanine (Mdha) in position 7, and (ii) the mcyB gene, which is indicative of homotyrosine (Hty) in position 2 of the microcystin (MC) molecule. Due to high temperature desiccation, the deterioration of the DNA template quality was rather due to fragmentation than due to nucleotide substitutions. By using the heat-desiccated samples of Lake Zürich, Switzerland the abundance of the Dhb, Mdha and Hty genotypes was determined during three decades (1977-2008). Despite major changes in the trophic state of the lake resulting in a major increase of the total Planktothrix population density, the proportion of these genotypes encoding the synthesis of different MC congeners showed high stability. Nevertheless, a decline of the most abundant mcyA genotype indicative of the synthesis of Dhb in position 7 of the MC molecule was observed. This decline could be related to the gradual incline in the proportion of a mutant genotype carrying a 1.8kbp deletion of this gene region. The increase of this mcyA (Dhb) gene deletion mutant has been minor so far, however, and likely did not affect the overall toxicity of the population.  相似文献   
109.
The present study was designed to investigate the brain functional architecture that subserves visuo-spatial and motor processing in highly skilled individuals. By using functional magnetic resonance imaging (fMRI), we measured brain activity while eleven Formula racing-car drivers and eleven ‘naïve’ volunteers performed a motor reaction and a visuo-spatial task. Tasks were set at a relatively low level of difficulty such to ensure a similar performance in the two groups and thus avoid any potential confounding effects on brain activity due to discrepancies in task execution. The brain functional organization was analyzed in terms of regional brain response, inter-regional interactions and blood oxygen level dependent (BOLD) signal variability. While performance levels were equal in the two groups, as compared to naïve drivers, professional drivers showed a smaller volume recruitment of task-related regions, stronger connections among task-related areas, and an increased information integration as reflected by a higher signal temporal variability. In conclusion, our results demonstrate that, as compared to naïve subjects, the brain functional architecture sustaining visuo-motor processing in professional racing-car drivers, trained to perform at the highest levels under extremely demanding conditions, undergoes both ‘quantitative’ and ‘qualitative’ modifications that are evident even when the brain is engaged in relatively simple, non-demanding tasks. These results provide novel evidence in favor of an increased ‘neural efficiency’ in the brain of highly skilled individuals.  相似文献   
110.
Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha−1 in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha−1 to an increase of 8 Mg C ha−1. In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号