首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   24篇
  2024年   1篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   3篇
  2008年   12篇
  2007年   7篇
  2006年   8篇
  2005年   3篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  2001年   8篇
  2000年   8篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1924年   2篇
  1923年   5篇
  1922年   1篇
  1921年   1篇
排序方式: 共有195条查询结果,搜索用时 265 毫秒
121.
We directly measured the activity of the enzymes xanthine oxidase and xanthine dehydrogenase in rabbit and rat hearts, using a sensitive radiochemical assay. Neither xanthine oxidase activity nor xanthine dehydrogenase activity was detected in the rabbit heart. In the rat heart, xanthine oxidase activity was 9.1 +/- 0.5 mIU per gram wet weight and xanthine dehydrogenase activity was 53.0 +/- 1.9 mIU per gram wet weight. These results argue against the involvement of the xanthine oxidase/xanthine dehydrogenase system as a mechanism of tissue injury in the rabbit heart, and suggest that the ability of allopurinol to protect the rabbit heart against hypoxic or ischemic damage must be due to a mechanism other than inhibition of these enzymes.  相似文献   
122.
123.
The phylogenetic position of Cephalenchus is enigmatic with respect to other tylench nematodes. In this study, Cephalenchus populations representing 11 nominal species were sampled worldwide for molecular and morphological characterization. Species identification was based on light microscopy (LM) and scanning electron microscopy (SEM). Molecular analyses were based on the genes (i.e. 18S, 28S, 5.8S) and internal transcribed spacers (ITS‐1 and ITS‐2) of the ribosomal RNA (rRNA). Phylogenetic analyses (i.e. full and reduced alignments) of either concatenated or single genes always supported the monophyly of Cephalenchus. A sister relationship between Cephalenchus and Eutylenchus excretorius was recovered by most analyses, although branch support varies depending on the dataset used. The position of Cephalenchus + E. excretorius within Tylenchomorpha nevertheless remains ambiguous, thus highlighting the importance of sampling additional genes as well as taxa. Placement of Cephalenchus + E. excretorius as sister of Tylenchinae or Boleodorinae could not be rejected on the basis of 18S and 28S rRNA genes. Within Cephalenchus, amphidial opening morphology shows congruence with molecular‐based phylogenetic relationships, whereas the number of lines in the lateral field is likely to be a convergent trait. Morphometric analyses clearly distinguished short tail from medium–long tail species, and SEM observations seem to suggest a relation between tail length and amphidial opening. In addition, molecular phylogenies support the non‐monophyly of Cephalenchus cephalodiscus, Cephalenchus cylindricus, Cephalenchus daisuce and Cephalenchus leptus. The known extent of Cephalenchus diversity is increased with the inclusion of two new species, and the biogeography of the genus is discussed.  相似文献   
124.
Heme is a required prosthetic group in many electron transfer proteins and redox enzymes. The human BK channel, which is a large-conductance Ca2+ and voltage-activated K+ channel, is involved in the hypoxic response in the carotid body. The BK channel has been shown to bind and undergo inhibition by heme and activation by CO. Furthermore, evidence suggests that human heme oxygenase-2 (HO2) acts as an oxygen sensor and CO donor that can form a protein complex with the BK channel. Here we describe a thiol/disulfide redox switch in the human BK channel and biochemical experiments of heme, CO, and HO2 binding to a 134-residue region within the cytoplasmic domain of the channel. This region, called the heme binding domain (HBD) forms a linker segment between two Ca2+-sensing domains (called RCK1 and RCK2) of the BK channel. The HBD includes a CXXCH motif in which histidine serves as the axial heme ligand and the two cysteine residues can form a reversible thiol/disulfide redox switch that regulates affinity of the HBD for heme. The reduced dithiol state binds heme (Kd = 210 nm) 14-fold more tightly than the oxidized disulfide state. Furthermore, the HBD is shown to tightly bind CO (Kd = 50 nm) with the Cys residues in the CXXCH motif regulating affinity of the HBD for CO. This HBD is also shown to interact with heme oxygenase-2. We propose that the thiol/disulfide switch in the HBD is a mechanism by which activity of the BK channel can respond quickly and reversibly to changes in the redox state of the cell, especially as it switches between hypoxic and normoxic conditions.  相似文献   
125.
Heme oxygenases (HOs) are monooxygenases that catalyze the first step in heme degradation, converting heme to biliverdin with concomitant release of Fe(II) and CO from the porphyrin macrocycle. Two heme oxygenase isoforms, HO-1 and HO-2, exist that differ in several ways, including a complete lack of Cys residues in HO-1 and the presence of three Cys residues as part of heme-regulatory motifs (HRMs) in HO-2. HRMs in other heme proteins are thought to directly bind heme, or to otherwise regulate protein stability or activity; however, it is not currently known how the HRMs exert these effects on HO-2 function. To better understand the properties of this vital enzyme and to elucidate possible roles of its HRMs, various forms of HO-2 possessing distinct alterations to the HRMs were prepared. In this study, variants with Cys265 in a thiol form are compared with those with this residue in an oxidized (part of a disulfide bond or existing as a sulfenate moiety) form. Absorption and magnetic circular dichroism spectroscopic data of these HO-2 variants clearly demonstrate that a new low-spin Fe(III) heme species characteristic of thiolate ligation is formed when Cys265 is reduced. Additionally, absorption, magnetic circular dichroism, and resonance Raman data collected at different temperatures reveal an intriguing temperature dependence of the iron spin state in the heme–HO-2 complex. These findings are consistent with the presence of a hydrogen-bonding network at the heme’s distal side within the active site of HO-2 with potentially significant differences from that observed in HO-1.  相似文献   
126.
Reduced ferredoxin is an intermediate in the methylotrophic and aceticlastic pathway of methanogenesis and donates electrons to membrane-integral proteins, which transfer electrons to the heterodisulfide reductase. A ferredoxin interaction has been observed previously for the Ech hydrogenase. Here we present a detailed analysis of a Methanosarcina mazei Δech mutant which shows decreased ferredoxin-dependent membrane-bound electron transport activity, a lower growth rate, and faster substrate consumption. Evidence is presented that a second protein whose identity is unknown oxidizes reduced ferredoxin, indicating an involvement in methanogenesis from methylated C1 compounds.The aceticlastic pathway of methanogenesis creates approximately 70% (10) of the biologically produced methane and is of great ecological importance, as methane is a potent greenhouse gas. Organisms using this pathway to convert acetate to methane belong exclusively to the genera Methanosarcina and Methanosaeta. The two carbon atoms of acetate have different fates in the pathway. The methyl moiety is converted to methane, whereas the carbonyl moiety is further oxidized to CO2 and the electrons derived from this oxidation step are used to reduce ferredoxin (Fd) (6). During methanogenesis from methylated C1 compounds (methanol and methylamines), one-quarter of the methyl groups are oxidized to obtain electrons for the reduction of heterodisulfide (27). A key enzyme in the oxidative part of methylotrophic methanogenesis is the formylmethanofuran dehydrogenase, which oxidizes the intermediate formylmethanofuran to CO2 (7). The electrons are transferred to Fd. It has been suggested that reduced ferredoxin (Fdred) donates electrons to the respiratory chain with the heterodisulfide (coenzyme M [CoM]-S-S-CoB) as the terminal electron acceptor and that the reaction is catalyzed by the Fdred:CoM-S-S-CoB oxidoreductase system (7, 24). The direct membrane-bound electron acceptor for Fdred is still a matter of debate; for the Ech hydrogenase, a reduced ferredoxin-accepting, H2-evolving activity has been observed for Methanosarcina barkeri (20), which implies that the H2:CoM-S-S-CoB oxidoreductase system is involved in electron transport (13). Direct electron flow from the Ech hydrogenase to the heterodisulfide reductase has not been shown to date (20, 21). In contrast to M. barkeri, Methanosarcina acetivorans lacks the Ech hydrogenase (11). It can nevertheless grow on acetate, which is why another complex present in this organism, the Rnf complex, is thought to be involved in the aceticlastic pathway of methanogenesis as an acceptor for Fdred (8, 10, 17). The Methanosarcina mazei genome, however, contains genes coding for the Ech hydrogenase, but this species lacks the Rnf complex (5).To investigate whether the Ech hydrogenase is the only means by which M. mazei channels electrons from Fdred into the respiratory chain, a mutant lacking the Ech hydrogenase (M. mazei Δech mutant) was constructed. Electron transport experiments using Fdred as the electron donor and CoM-S-S-CoB as the electron acceptor were conducted with wild-type and mutant membranes to gain deeper insight into the actual membrane-bound protein complexes that accept electrons from Fdred. Furthermore, an in-depth characterization of the growth and trimethylamine (TMA) consumption of the Δech mutant was performed, which provided insight into the in vivo role of Ech hydrogenase.  相似文献   
127.
Methyl-coenzyme M reductase (MCR) catalyzes the final step in methane biosynthesis by methanogenic archaea and contains a redox-active nickel tetrahydrocorphin, coenzyme F430, at its active site. Spectroscopic and computational methods have been used to study a novel form of the coenzyme, called F330, which is obtained by reducing F430 with sodium borohydride (NaBH4). F330 exhibits a prominent absorption peak at 330 nm, which is blue shifted by 100 nm relative to F430. Mass spectrometric studies demonstrate that the tetrapyrrole ring in F330 has undergone reduction, on the basis of the incorporation of protium (or deuterium), upon treatment of F430 with NaBH4 (or NaBD4). One- and two-dimensional NMR studies show that the site of reduction is the exocyclic ketone group of the tetrahydrocorphin. Resonance Raman studies indicate that elimination of this pi-bond increases the overall pi-bond order in the conjugative framework. X-ray absorption, magnetic circular dichroism, and computational results show that F330 contains low-spin Ni(II). Thus, conversion of F430 to F330 reduces the hydrocorphin ring but not the metal. Conversely, reduction of F430 with Ti(III) citrate to generate F380 (corresponding to the active MCR(red1) state) reduces the Ni(II) to Ni(I) but does not reduce the tetrapyrrole ring system, which is consistent with other studies [Piskorski, R., and Jaun, B. (2003) J. Am. Chem. Soc. 125, 13120-13125; Craft, J. L., et al. (2004) J. Biol. Inorg. Chem. 9, 77-89]. The distinct origins of the absorption band shifts associated with the formation of F330 and F380 are discussed within the framework of our computational results. These studies on the nature of the product(s) of reduction of F430 are of interest in the context of the mechanism of methane formation by MCR and in relation to the chemistry of hydroporphinoid systems in general. The spectroscopic and time-dependent DFT calculations add important insight into the electronic structure of the nickel hydrocorphinate in its Ni(II) and Ni(I) valence states.  相似文献   
128.
129.
130.
A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号