首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   8篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   7篇
  2015年   7篇
  2014年   9篇
  2013年   7篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   8篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1976年   1篇
排序方式: 共有117条查询结果,搜索用时 46 毫秒
111.
tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNALys(UUU) as a target of EcoPrrC toxicity in yeast.  相似文献   
112.
113.
Genetic manipulation of yeast linear DNA plasmids, particularly of k1 and k2 from the non-conventional dairy yeast Kluyveromyces lactis, has been advanced by the recent establishment of DNA transformation-mediated one-step gene disruption and allele replacement techniques. These methods provide the basis for a strategy for the functional analysis of plasmid genes and DNA elements. By use of double selection regimens, these single-gene procedures have been extended to effect disruption of individual genes on plasmid k2 and transplacement of a functional copy onto plasmid k1, resulting in the production of yeast strains with an altered plasmid composition. This cytoplasmic gene shuffle system facilitates the introduction of specifically modified alleles into k1 or k2 in order to study the function, expression (from UCS promoters) and regulation of cytoplasmic linear plasmid genes. Additionally, identification, characterization and localization of plasmid gene products of interest are made possible by shuffling GFP-, epitope- or affinity purification-tagged alleles between k2 and k1. The gene shuffle approach can also be used for vector development and heterologous protein expression in order to exploit the biotechnical potential of the K. lactis k1/k2 system in yeast cell factory research.  相似文献   
114.
115.
116.
117.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号