首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   26篇
  2023年   2篇
  2021年   13篇
  2020年   2篇
  2019年   8篇
  2018年   8篇
  2017年   7篇
  2016年   14篇
  2015年   22篇
  2014年   27篇
  2013年   21篇
  2012年   38篇
  2011年   45篇
  2010年   27篇
  2009年   13篇
  2008年   40篇
  2007年   28篇
  2006年   31篇
  2005年   25篇
  2004年   30篇
  2003年   30篇
  2002年   20篇
  2001年   9篇
  2000年   10篇
  1999年   9篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   10篇
  1990年   3篇
  1989年   1篇
  1988年   11篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
排序方式: 共有525条查询结果,搜索用时 234 毫秒
121.
Hantaviruses are important contributors to disease burden in the New World, yet many aspects of their distribution and dynamics remain uncharacterized. To examine the patterns and processes that influence the diversity and geographic distribution of hantaviruses in South America, we performed genetic and phylogeographic analyses of all available South American hantavirus sequences. We sequenced multiple novel and previously described viruses (Anajatuba, Laguna Negra-like, two genotypes of Castelo dos Sonhos, and two genotypes of Rio Mamore) from Brazilian Oligoryzomys rodents and hantavirus pulmonary syndrome cases and identified a previously uncharacterized species of Oligoryzomys associated with a new genotype of Rio Mamore virus. Our analysis indicates that the majority of South American hantaviruses fall into three phylogenetic clades, corresponding to Andes and Andes-like viruses, Laguna Negra and Laguna Negra-like viruses, and Rio Mamore and Rio Mamore-like viruses. In addition, the dynamics and distribution of these viruses appear to be shaped by both the geographic proximity and phylogenetic relatedness of their rodent hosts. The current system of nomenclature used in the hantavirus community is a significant impediment to understanding the ecology and evolutionary history of hantaviruses; here, we suggest strict adherence to a modified taxonomic system, with species and strain designations resembling the numerical system of the enterovirus genus.  相似文献   
122.
The "glutamate" theory of schizophrenia emerged from the observation that phencyclidine (PCP), an open channel antagonist of the NMDA subtype of glutamate receptor, induces schizophrenia-like behaviors in humans. PCP also induces a complex set of behaviors in animal models of this disorder. PCP also increases glutamate and dopamine release in the medial prefrontal cortex and nucleus accumbens, brain regions associated with expression of psychosis. Increased motor activation is among the PCP-induced behaviors that have been widely validated as models for the characterization of new antipsychotic drugs. The peptide transmitter N-acetylaspartylglutamate (NAAG) activates a group II metabotropic receptor, mGluR3. Polymorphisms in this receptor have been associated with schizophrenia. Inhibitors of glutamate carboxypeptidase II, an enzyme that inactivates NAAG following synaptic release, reduce several behaviors induced by PCP in animal models. This research tested the hypothesis that two structurally distinct NAAG peptidase inhibitors, ZJ43 and 2-(phosphonomethyl)pentane-1,5-dioic acid, would elevate levels of synaptically released NAAG and reduce PCP-induced increases in glutamate and dopamine levels in the medial prefrontal cortex and nucleus accumbens. NAAG-like immunoreactivity was found in neurons and presumptive synaptic endings in both regions. These peptidase inhibitors reduced the motor activation effects of PCP while elevating extracellular NAAG levels. They also blocked PCP-induced increases in glutamate but not dopamine or its metabolites. The mGluR2/3 antagonist LY341495 blocked these behavioral and neurochemical effects of the peptidase inhibitors. The data reported here provide a foundation for assessment of the neurochemical mechanism through which NAAG achieves its antipsychotic-like behavioral effects and support the conclusion NAAG peptidase inhibitors warrant further study as a novel antipsychotic therapy aimed at mGluR3.  相似文献   
123.
Jac1p is a conserved, specialized J-protein that functions with Hsp70 in Fe-S cluster biogenesis in mitochondria of the yeast Saccharomyces cerevisiae. Although Jac1p as well as its specialized Hsp70 partner, Ssq1p, binds directly to the Fe-S cluster scaffold protein Isu, the Jac1p-Isu1p interaction is not well understood. Here we report that a C-terminal fragment of Jac1p lacking its J-domain is sufficient for interaction with Isu1p, and amino acid alterations in this domain affect interaction with Isu1p but not Ssq1p. In vivo, such JAC1 mutations had no obvious phenotypic effect. However, when present in combination with a mutation in SSQ1 that causes an alteration in the substrate binding cleft, growth was significantly compromised. Wild type Jac1p and Isu1p cooperatively stimulate the ATPase activity of Ssq1p. Jac1p mutant protein is only slightly compromised in this regard. Our in vivo and in vitro results indicate that independent interaction of Jac1p and the Isu client protein with Hsp70 is sufficient for robust growth under standard laboratory conditions. However, our results also support the idea that Isu protein can be "targeted" to Ssq1p after forming a complex with Jac1p. We propose that Isu protein targeting may be particularly important when environmental conditions place high demands on Fe-S cluster biogenesis or in organisms lacking specialized Hsp70s for Fe-S cluster biogenesis.  相似文献   
124.
125.
126.
A new regioselective method of di-gem-thio-substituted PNP-crown derivatives synthesis is presented. The geminalmercaptoethanolanetricyclophosphaza-PNP-lariat ether structure has been determined by X-ray crystallography and characterised by ab initio calculations. The 16-membered PNP-crown ether ring exists in unique conformation: acap acsc+sc+ap sc+ap ap scap scscac+ap ac+. All the ether oxygen atoms are directed into the interior of the ring. All endocyclic P-N bond lengths are equal within experimental error with the mean value 1.578(2) Å. The P-S bond properties have been characterised in terms of natural bond orbital (NBO) analysis, and its interactions with other NBO have been described. The spirocyclisation mechanism at cyclophosphazene phosphorus atom has been proposed.  相似文献   
127.
Substantial evidence exists supporting the notion that Csk and CHK, two negative regulatory kinases of the Src tyrosine kinase family, play distinct roles during development of the nervous system. One of the differences relies on the effects of both kinases on the MAPK transduction pathway. Specifically, CHK was shown to enhance MAPK signaling, while the role of Csk was unclear. In this work, we compared the effect of CHK versus Csk on MAPK signaling and elucidated the signaling pathway mediated by CHK leading to the activation of Erk1/2. Exogenous expression of wild-type CHK, but not Csk or a dead-kinase mutant of CHK, resulted in enhanced Erk1/2 phosphorylation in PC12 cells. CHK inhibited Src activity following stimulation of the cells with NGF. However, stimulation of Erk1/2 activation by CHK was independent of the NGF stimulation or the inhibition of Src kinase by CHK. CHK induced a complex formation between SHP-2 and Grb2, subsequently leading to the increased activity of Ras as well as Erk1/2 activation via the Raf/MEK1/2 pathway. Down-regulation of the expression of endogenous CHK by RNAi in PC12 cells led to a significant decrease in MAPK activation following NGF stimulation. Stimulation of CHK-overexpressing PC12 cells with EGF induced neurite outgrowth in the majority of cells. Taken together, this study describes for the first time the Src-independent actions of CHK and provides novel insights into CHK function in neural cells.  相似文献   
128.
129.

Background  

Cellular response to external stimuli requires propagation of corresponding signals through molecular signaling pathways. However, signaling pathways are not isolated information highways, but rather interact in a number of ways forming sophisticated signaling networks. Since defects in signaling pathways are associated with many serious diseases, understanding of the crosstalk between them is fundamental for designing molecularly targeted therapy. Unfortunately, we still lack technology that would allow high throughput detailed measurement of activity of individual signaling molecules and their interactions. This necessitates developing methods to prioritize selection of the molecules such that measuring their activity would be most informative for understanding the crosstalk. Furthermore, absence of the reaction coefficients necessary for detailed modeling of signal propagation raises the question whether simple parameter-free models could provide useful information about such pathways.  相似文献   
130.
Recent advances in our understanding of translational dynamics indicate that codon usage and mRNA secondary structure influence translation and protein folding. The most frequent cause of cystic fibrosis (CF) is the deletion of three nucleotides (CTT) from the cystic fibrosis transmembrane conductance regulator (CFTR) gene that includes the last cytosine (C) of isoleucine 507 (Ile507ATC) and the two thymidines (T) of phenylalanine 508 (Phe508TTT) codons. The consequences of the deletion are the loss of phenylalanine at the 508 position of the CFTR protein (ΔF508), a synonymous codon change for isoleucine 507 (Ile507ATT), and protein misfolding. Here we demonstrate that the ΔF508 mutation alters the secondary structure of the CFTR mRNA. Molecular modeling predicts and RNase assays support the presence of two enlarged single stranded loops in the ΔF508 CFTR mRNA in the vicinity of the mutation. The consequence of ΔF508 CFTR mRNA “misfolding” is decreased translational rate. A synonymous single nucleotide variant of the ΔF508 CFTR (Ile507ATC), that could exist naturally if Phe-508 was encoded by TTC, has wild type-like mRNA structure, and enhanced expression levels when compared with native ΔF508 CFTR. Because CFTR folding is predominantly cotranslational, changes in translational dynamics may promote ΔF508 CFTR misfolding. Therefore, we propose that mRNA “misfolding” contributes to ΔF508 CFTR protein misfolding and consequently to the severity of the human ΔF508 phenotype. Our studies suggest that in addition to modifier genes, SNPs may also contribute to the differences observed in the symptoms of various ΔF508 homozygous CF patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号